Description
Chair: Jun.-Prof. Dr. Anne-Christin Hauschild (UMG), Dr. Nicolas Spicher (UMG), Dr. Zully Ritter (UMG)
Content / Abstract:
Nowadays, AI applications in healthcare and in general for clinical practice have proved to be successful in specific tasks like diagnosis prediction, risk estimation (e.g., heart failure risks), alarm and order automation, or cancer differential diagnosis; on the other hand, these achievements are confronted to endurance challenges related mainly to patient security (data privacy and data ownership) and bias additionally to ethical issues. Even without considering the regulation of AI and the coming AI Act, AI solutions to be implemented in clinical practice have been developed in academia and industry. In our session, we will provide insights into already proven solutions and those being tested to be efficiently implemented in clinical setups. We will present and delve into machine-learning approaches using mainly clinical, image, and biosignal data. Concerning solutions to handle data privacy properly, among other patient security issues, we will present in this session how, for example, federated learning is gaining in importance as an appropriate technique, allowing not only to solve the problems related to data sharing (both ethical and technical) but also even improving the performance of AI solutions in the case of not having enough or representative data to find a good performing AI solution.
Aiming to share and discuss the lessons learned during designing and testing AI solutions for clinical practice, we invite you to participate and be part of it.
Topics of interest include:
- Lessons learned from AI projects in clinical practice
- Federated Learning as a novel modality enabling AI in clinical practice
- Translation of AI methods for biosignal processing towards clinical practice
Artificial Intelligence has a high potential of improving medical patient treatment by augmenting the intelligence of human doctors, supporting them during critical tasks or just making their lives easier by partially taking over time-consuming duties. In this talk, we’re going to imagine how AI support would look like in a perfect state, have a look at current approaches of AI in medicine and...
Heart failure (HF) poses a significant health burden in high-income countries, affecting over 10% of individuals aged 70 and older. The progressive nature of HF leads to frequent hospital admissions and elevated healthcare costs. There is no easily-acquired biomarker available which allows to gain insight and derive predictions into HF dynamics with the current diagnosis being based on blood...
In addition to genetic testing, current diagnostic practices for rare neuromuscular diseases involve muscle biopsy analysis, often hindered by subjective interpretation and variability. Advances in artificial intelligence, particularly deep learning, offer promising solutions to automate and enhance diagnostic accuracy by identifying new quantitative, standardized features and phenotypic...
In the rapidly changing field of prevention and rehabilitation, adaptive and personalized Artificial Intelligence (AI) systems play a crucial role as facilitators of patient-centric care. These systems, by analyzing comprehensive data on user behavior and situational context, offer support customized to the specific needs of individual patients [1, 2, 3, 4]. However, patients dealing with...
The development of highly accurate AI models for clinical applications, such as disease classification or personalized treatment recommendation, is heavily constrained by small amount of available training data. The data is commonly generated at different institutions, subject to different data generating processes and privacy regulations. In order to maximize the predictive performance, all...