Description
We find that the presence of strong non-Abelian conserved quantities can lead to highly entangled stationary states even for unital quantum channels. We derive exact expressions for the bipartite logarithmic negativity, Rényi negativities, and operator space entanglement for stationary states restricted to one symmetric subspace, with focus on the trivial subspace. As Abelian examples, we show that strong U(1) symmetries and classical fragmentation lead to separable stationary states in any symmetric subspace. In contrast, for non-Abelian SU(N) symmetries, both logarithmic and Rényi negativities scale logarithmically with system size. We prove that the method apply to open quantum evolutions with a broad class of symmetries.
References
https://arxiv.org/abs/2406.08567