Local three- and four-point correlators yield important insight into strongly correlated systems and have many applications. However, the nonperturbative, accurate computation of dynamical multipoint correlators is challenging, particularly in the real-frequency domain for systems at low temperatures. We have developed generalized spectral representations for multipoint correlators, and a...
The many-body problem is usually approached from one of two perspectives: the first originates from an action and is based on Feynman diagrams, the second is centered around a Hamiltonian and deals with quantum states and operators. The connection between results obtained in either way is made through spectral (or Lehmann) representations, well known for two-point correlators. We have derived...
In recent years, reliable approaches have been developed [1,2] to unambiguously identify the dominant fluctuations driving the multifaceted phenomena of many-electron physics. Among those, the "fluctuation diagnostics" [3] relies on the possibility of expressing the physical quantity of interest in complementary representations. Hitherto, this scheme has been only applied to normal,...
In the last 30 years, the dynamical mean field theory (DMFT) has developed to a standard tool for the theoretical description of strongly correlated electron systems. It self-consistently maps a lattice Hamiltonian onto an impurity problem which can be solved exactly via exact diagonalization or Quantum Monte Carlo methods. In this way, all purely local correlation effects in the system are...