Speaker
Description
The recent discovery of AV$_3$Sb$_5$ (A=K,Rb,Cs) has uncovered an intriguing arena for exotic Fermi surface instabilities in kagome metals. Aside from charge density wave order, a multi-dome superconducting phase is found, with strong indications to be of unconventional origin including features such as time reversal symmetry breaking. We find that the sublattice interference mechanism is necessary and sufficient to uncover the nature of unconventional particle-hole and particle-particle pairing in the V net kagome metals. We predict a Peierls-type charge density wave with finite relative angular momentum and orbital current formation. With regard to the possible nature of unconventional pairing, we find a rich phase diagram depending on the range of the screened electronic interactions, the multi-orbital content, and the location of multiple van Hove singularities with respect to the Fermi level. Combined, kagome metals open a new domain of unconventional electronic order, unfolding a plethora of fascinating experimental and theoretical investigations.