Condensed matter systems can be used in various scenarios to emulate and study phenomena from a completely different field of physics, for example, elementary particle physics or gravity. Such analog condensed matter models provide a novel perspective to approach questions that are not directly accessible in the original systems as they can potentially be realized experimentally in a...
I will discuss new platforms to create and detect chiral (time reversal symmetry breaking) superconductivity. Two systems will be considered: crystalline multi-layer graphene and twist junctions of cuprate superconductors. I will discuss theoretical and experimental considerations in these systems, the prospects for chiral superconductivity, and its possible experimental signatures.
Among the variety of correlated states exhibited by twisted bilayer graphene (TBG), the cascades in the spectroscopic properties and in the compressibility happen in a larger energy, twist angle and temperature range in comparison to other effects, pointing to a hierarchy of phenomena. Using Dynamical Mean Field Theory + Hartree calculations, we show that the spectral weight reorganization...