Simplified as it is, the Hubbard model embodies much of the complexity of the `strong correlation problem’ and has established itself as a paradigmatic model in the field, with physical relevance to both cuprates and cold atomic gases in optical lattices. In this talk, I will argue that several key aspects of its physics in two dimensions can now be established beyond doubt, thanks to the...
We address the sudden reconstruction of the Fermi surface (FS) at the Kondo breakdown (KB) quantum critical point (QCP) in heavy fermion systems. We focus on results on the periodic Anderson model, obtained using a two-site cellular dynamical mean-field theory (CDMFT) approach. By employing the Numerical Renormalization Group to solve the effective impurity model, we are able to dispose of the...
Quantum many-body theories, including diagrammatic perturbation theories and non-perturbative embedding theories, describe the physics of many interacting particles in solids. These theories are typically applied to effective low-energy lattice models, which are designed to capture the essential degrees of freedom of a solid.
This talk will summarize recent progress on solving the many-body...
Transition metal compounds in which electrons from partially filled d-shells strongly interact with each other keep challenging the standard theory of solids as new, emergent exotic electronic orders are experimentally observed. Despite vastly different macroscopic properties, e.g. high temperature superconductivity (HTS), electronic nematicity or density waves to cite a few, the electronic...