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ABSTRACT
The lead-lag structure of multivariate time-ordered observations and the possibility to disen-
tangle between-person (BP) from within-person (WP) sources of variance are major assets of
longitudinal (panel) data. Hence, psychologists are making increasing use of such data, often
with the intent to delineate the dynamic properties of psychological mechanisms, understood
as a sequence of causal effects that govern psychological functioning. However, even with
longitudinal data, psychological mechanisms are not easily identified. In this article, we show
how an adequate representation of time may enhance the tenability of causal interpretations
in the context of multivariate longitudinal data analysis. We anchor our considerations with an
example that illustrates some of the main problems and questions faced by applied research-
ers and practitioners. We distinguish between static versus dynamic and discrete versus con-
tinuous time modeling approaches and discuss their advantages and disadvantages. We place
particular emphasis on different ways of addressing BP differences and stress their dual role as
potential confounds versus valuable sources of information for improving estimation and aid-
ing causal inference. We conclude by outlining an approach that offers the potential of better
integration of information on BP differences and WP changes in the search for causal mecha-
nisms along with a discussion of current problems and limitations.
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Introduction

To improve the description, explanation, prediction,
and modification of human behavior, an increasing
number of researchers resort to longitudinal studies
(Hamaker & Wichers, 2017; Hsiao, 2007). This devel-
opment has been fueled by recent technological
advances, such as smartphones or wearable devices
(Mehl & Conner, 2012; Trull & Ebner-Priemer, 2013),
which make the collection of large amounts of data
simpler and more affordable. In addition, longitudinal
study designs in psychological research have diversi-
fied and include classical panel designs (many individ-
uals observed at a few measurement occasions),
intensive longitudinal designs (many measurement
occasions), single subject time series, as well as vari-
ous combinations of cross-sectional and longitudinal
data. In turn, data analytic challenges related to
irregularly spaced measurement occasions, multivari-
ate constructs, and different sources of between-
person (BP) and within-person (WP) variation have
become the new norm, rather than the exception.

The COGITO study typifies such complexities. In
this study, a large test battery of cognitive and non-cog-
nitive measures was administered to 101 younger and
103 older adults across more than 100 daily 1-hour ses-
sions (Schmiedek, L€ovden, & Lindenberger, 2010). In
addition, participants underwent comprehensive pre-
and post-test measurements. Structural and functional
brain measures were also collected for some of the indi-
viduals. A subset of the participants also are participants
in the German socioeconomic panel study (G-SOEP;
Wagner, Frick, & Schupp, 2007), linking their data to
one of the longest running panel studies worldwide.
Thus, various measures were collected across different
individuals and were sampled at different measurement
occasions, resulting in different data structures from
where WP changes and BP differences are assessed.
Although the COGITO study is exceptional in many
regards, complex longitudinal study designs of this sort
are being used more and more regularly.

The increasing availability of large complex data
sets is not unique to psychology. In econometrics, for
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example, data on stock indices are available that go
back well over a century. What makes multivariate
research in psychology particularly challenging, how-
ever, is that we wish to go beyond simple prediction,
seeking to understand the mechanisms that underlie
the psychological functioning of human behavior.
Apart from being an end in itself, understanding psy-
chological mechanisms can also be an important step
toward developing effective interventions. Although it
is clear that inferring causal mechanisms from com-
plex multivariate data sets is a true challenge, we also
believe that current practice suffers from a number of
common problems. The goal of this article is to iden-
tify some of these problems and to show how they
can be avoided by paying closer attention to the role
of time.

To achieve this goal, we first introduce an example,
which illustrates some typical questions faced by
applied researchers and practitioners. These questions
serve to structure the remainder of the article. Second,
we distinguish between static versus dynamic and dis-
crete versus continuous time modeling approaches
and discuss their advantages and disadvantages in the
study of psychological mechanisms. Third, we review
different approaches to deal with BP differences, high-
lighting their dual role as a potential source of con-
founding as well as a source of information to
improve the estimation and causal inference. We con-
clude by outlining an approach that offers the poten-
tial of better integration of information on BP
differences and WP changes in the search for causal
mechanisms, underlying psychological functioning,
along with a discussion of current problems and
limitations.

The list of problems and potential solutions dis-
cussed in this article is far from complete. Likewise,
the article does not replace a solid introduction to the
statistical techniques (such as continuous time
dynamic modeling) discussed in this work. For this
more advanced treatment, we will point the reader to
the relevant technical literature and software. The pri-
mary purpose of this article is to provide an integra-
tive account of common problems in inferring causal
mechanisms in multivariate behavioral research, exist-
ing solutions, as well as unresolved issues and future
research directions. As such, our article necessarily
remains somewhat subjective, reflecting our view of
the current state of the art. By providing a compre-
hensive and non-technical discussion of a broad
scope, we hope this paper will prove helpful to applied
researchers from various fields in their quest to iden-
tify and understand psychological mechanisms.

An illustrative example

As a motivating example, consider a scientist, who is
also a practicing clinician, specializing in the treat-
ment of social anxiety. She is responsible for a small
group of patients, who are treated with anxiolytic
antidepressants. In practice, these are typically select-
ive serotonin reuptake inhibitors (SSRIs), which lower
the presynaptic absorption of serotonin and thereby
increase serotonin in the synaptic cleft. The exact
mechanism of SSRI’s effect is still unknown, and their
effectiveness for different groups of patients is still
subject to some debate. Available evidence from meta
analyses of double-blind, placebo-controlled, random-
ized clinical trials (RCTs), however, has shown SSRIs
to be generally effective in reducing social anxiety
(Hedges, Brown, Shwalb, Godfrey, & Larcher, 2006).

Despite her trust in the scientific rigor of the meta-
analytic studies, to our scientist a medium-to-strong
correlation between serotonin level and social anxiety
stands in partial contradiction to personal experiences
reported by her patients. Her patients typically report
only moderate effects of SSRI dosage on anxiety with
some even reporting effects in the opposite direction.
For this reason, she decides to conduct her own study,
aiming to (a) gain a better understanding of the
mechanism underlying the relationship between sero-
tonin and social anxiety and to (b) assess whether the
meta-analytic results found in between-group (BP)
RCTs can be generalized to her own individual
patients so that she can offer better patient-centered
advice on the use of SSRIs. To this end, she assesses
the serotonin level of N ¼ 50 patients approximately
once a week and asks them to complete a social ques-
tionnaire at approximately the same time intervals.
After 10 months, she has collected data at up to about
40 measurement occasions from the 50 patients. What
statistical model should she use to best understand pos-
sible mechanisms?

Upon closer inspection of the data, she realizes that
the timing between measurement occasions differs
greatly within, as well as across individuals. In fact,
none of her patients followed exactly the original
assessment protocol of 40 weekly measurement occa-
sions. It is obvious to her that the effect of serotonin
on social anxiety is unlikely to be instantaneous, but
rather unfolds over time, and thus will differ depend-
ing on the time interval between the measurements.
How should she best handle the different time intervals
in the analysis and interpretation of results?

Although the previous RCTs focused almost exclu-
sively on the effect of serotonin on social anxiety,
from her clinical experience she knows that this is
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unlikely to be a one-way effect: Changes in social anx-
iety (e.g., due to a change in the environment) will
likely also affect the subsequent levels of serotonin.
Furthermore, she expects social withdrawal behavior
to play an important role in the relationship between
social anxiety and serotonin, for example, by media-
ting the effect of social anxiety on serotonin. This
raises the question of how should she model and inter-
pret reciprocal and mediation effects and how are such
effects manifested for any given time interval?

Although all of her patients suffer from social anx-
iety, there are large BP differences in the severity of
anxiety as well as the level of serotonin. As a practic-
ing clinician, she takes the perspective that each of
her patients is unique. As a scientist, however, she
believes that there are general mechanisms that apply
to all individuals. Should she ignore BP differences by
constraining model parameters to equality across indi-
viduals? Should she analyze the data from each patient
separately? More generally, how should she best deal
with between-person differences in longitudinal panel
data analysis?

Finally, she wonders about the implications of her
study. What if the results for one of her patients contra-
dict the results of existing BP studies? How can she
even compare an effect that is inferred from RCTs, rep-
resenting cross-sectional data on many individuals, to an
effect for one of her patients that is inferred from longi-
tudinal data representing a single individual? If the rela-
tionship between serotonin and social anxiety in one of
her patients is in the opposite direction from the previ-
ous RCT studies, should she treat that patient based on
the BP results or based on the findings from her own
investigation of this particular patient (or both)? More
generally, how can we compare and integrate results
based on BP differences and those based on WP changes
in our quest for causal mechanisms—or should we?

The role of time in longitudinal data analysis

The example from the previous section highlights the
kinds of questions clinically oriented psychological
researchers and practitioners may be interested in, and
the problems they can face when trying to address
them. In the following, we will demonstrate how a
deeper appreciation of the role of time can guide our
thinking in approaching and answering these questions.

Time in static versus dynamic longitudinal models

To answer the first question (what statistical model
should one use to best understand possible

mechanisms?), it is helpful to distinguish between two
broad classes of longitudinal models: static models
and dynamic models. We define a dynamic longitu-
dinal model as a model that accounts for (WP)
changes in a system of variables over time as a func-
tion of the past. Dynamic models are typically formu-
lated in terms of difference equations or differential
equations. In contrast, a static longitudinal model
accounts for the state of a system of variables, which
is often expressed as a function of time.

To contrast the two types of models, let us consider
a linear latent growth curve model, which is a typical
static model used in psychological research. In its sim-
plest linear form, it can be written as a regression
model as shown in Equation 1:

yi tð Þ ¼ g0 þ g1 � ti þ fi tð Þ: (1)

yi tð Þ denotes the value of the continuous dependent
variable y for individual i ¼ 1, … , N at a time point
t 2 R. The intercept is denoted by g0, the linear slope
by g1, and the error term at time point t is denoted
by fi tð Þ. Often, the intercept and slope are assumed to
be random variables, so that an additional subscript i
may be added to these two terms. As is apparent in
Equation 1, in this model time serves as an exogenous
predictor, which accounts for the time-dependent state
of the system (i.e., the dependent variable yi tð Þ). If the
time point is known, we can predict the state of the
system (i.e., the dependent variable). This is different
in a dynamic model, where the time point is neces-
sary, but not sufficient, to determine the state of a sys-
tem. To illustrate, let us consider a change score
model or autoregressive (cross-lagged) model, which
is a typical example of a dynamic model (e.g.,
McArdle, 2009). A simple autoregressive model is
given in Equation 2

yi tð Þ ¼ a � yi t�Dtð Þ þ fi tð Þ; (2)

with time interval Dt typically fixed to one.
Subtracting yi t�Dtð Þ from both sides of Equation 2
(i.e., yi tð Þ�yi t � Dtð Þ ¼ a�1ð Þ � yi t�Dtð Þ þ fi tð Þ) turns
the autoregressive model formulation into a mathem-
atically equivalent change score model formulation.
From this reformulation, it is readily apparent that
this model accounts for changes (i.e., yi tð Þ�yi t � Dtð Þ)
in the state of the system as a function of an initial
state yi t�Dtð Þ and the time Dt that has passed. Thus,
in contrast to static models, knowledge of the time
point t alone is not sufficient for predicting the state
of the system (i.e., the dependent variable), and we
also need to know something about the past (more
generally, we need to know the initial state).
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Although the two classes of models are not mutually
exclusive1, they provide a useful classification and it is
important to be aware of their relative strengths and
limitations. For researchers who are just interested in
describing change over time (Baltes & Nesselroade,
1979), static longitudinal models offer a simple way to
do so. A causal interpretation of such models is not pos-
sible. Things change as time changes, things do not
change because time changes. In the words of Baltes,
Reese, and Nesselroade (1988) “… although time is
inextricably linked to the concept of development, in
itself it cannot explain any aspect of developmental
change” (p. 108). Thus, when the goal is not only to
describe change, but to understand the mechanisms that
lead to change, dynamic models are needed. The
researcher from our introductory example clearly has
this goal, as she wants to better understand the mecha-
nisms underlying the relationship between serotonin and
social anxiety. To this end, she would be well-advised to
consider a dynamic modeling approach.

Discrete time versus continuous time models

The distinction between discrete time and continuous
time models is straightforward: In the former, time is
treated as a discrete variable that may only take on
values from a countable set, whereas in the latter,
time is treated as a continuous variable that may take
on infinitely many, uncountable, values.

Combined with the previous distinction between
static and dynamic models, this second distinction
leads to the two-by-two classification of longitudinal
models shown in Figure 1. From this classification
and the selected examples of prototypical statistical
techniques in each cell, we see that treating time as a
continuous variable in static models of change is
straightforward. Because time is an exogenous pre-
dictor (cf. Equation 1), it makes little difference
whether time is treated as a continuous or discrete
variable. The situation is different for dynamic mod-
els. When time is treated as a discrete variable, we
may compute a change score over a discrete time
interval (i.e., yi tð Þ�yi t � Dtð Þ� �

=Dt) and use discrete
time dynamic models such as autoregressive or change
score models (cf. Equation 2). In contrast, when treat-
ing time as a continuous variable, differential calculus

is needed (described below). The lack of familiarity of
applied researchers with differential calculus and the
lack of suitable software to implement and estimate
such models have severely hampered the use of con-
tinuous time dynamic models in modern psycho-
logical research.

To illustrate why this may be problematic, let us
return to the researcher from our example, who has
decided to use a dynamic model and has opted for a
vector-autoregressive time series model with cross-lagged
effects from serotonin to social anxiety. After having
estimated the model for two of her patients, she finds
herself in the situation illustrated in Figure 2. For one
patient (Figure 2A), who was assessed every 24 days, she
observed a comparatively strong effect of serotonin on
social anxiety, whereas for the second patient (Figure
2B), who was assessed every 6 days, the effect was con-
siderably smaller, despite shorter measurement intervals.
How can she determine whether the effects differ
because the measurement intervals differ, or because of
differences between the two individuals in the linkage
between serotonin and social anxiety, possibly indicating
different causal mechanisms? The situation is further
complicated by the fact that measurement occasions dif-
fer not only across, but also within individuals. In order
to avoid the problem of potentially biased parameter
estimates and effects that cannot be interpreted or com-
pared with one another, it is necessary to better account
for the role of time in dynamic longitudinal modeling
(cf. Cole & Maxwell, 2003; Gollob & Reichardt, 1987).

Figure 1. A two-by-two classification table of longitudinal
models: static versus dynamic models (vertical) and discrete
versus continuous time models (horizontal) along with selected
examples of prototypical statistical techniques in each cell.
Given that treating time as a continuous variable in static
models of change is straightforward, it is common (although
somewhat imprecise) among quantitative researchers to restrict
the term “continuous time models” to “continuous time
(dynamic) models” (lower right quadrant).

1For example, dynamic and static models may be combined by
augmenting a “dynamic” model by a static component or vice versa (e.g.,
a “static” linear growth curve model could be augmented by a dynamic
AR(1) process or a “dynamic” panel model could be augmented by a
linear mean trajectory). Likewise, we can restrict the parameters of a
dynamic model in such a way that the dynamics are eliminated, thus
reducing it to a static model.
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To demonstrate how this can be achieved, we first
consider latent change score models as an established
approach to dynamic modeling in psychological
research (McArdle, 2009). We then show how the
idea underlying latent change score models generalizes
to continuous time dynamic models and how the for-
mer may be considered a special case of the latter. In
line with the goal of this paper, we keep our discussion
as non-technical as possible. For a more comprehensive
introduction to latent change score models, we refer the
reader to work by McArdle, Hamagami, and others
(McArdle, 2009; McArdle & Hamagami, 2001, 2004;
Kievit et al., 2017). For a step-by-step introduction to
continuous time dynamic models in psychology, we
refer the reader to work by Oud, Voelkle, and others
(Oud & Jansen, 2000; Voelkle, Oud, Davidov, &
Schmidt, 2012). For a more technical comparison of the
two approaches, see Voelkle and Oud (2015).

Latent change score models
Latent change score models were developed to go
beyond the mere description of change offered by
static models. For example, McArdle (2009) urged
researchers not to start their data analysis by asking
“What is your data collection design?” but rather by
asking “What is your model for change?” (p. 601) – a
sentiment in line with the fundamental idea of
dynamic modeling. To this end, he proposed the use
of latent change score models (2009, p. 579; McArdle

& Hamagami, 2001, 2004). The basic idea of a change
score model has already been sketched: Instead of dir-
ectly predicting the dependent variable at a given
point in time, in a change score model we predict the
change in a variable over a time interval (i.e.,
yi tð Þ�yi t � Dtð Þ� �

=Dt ¼ a�1ð Þ � yi t�Dtð Þ þ fi tð Þ).
This idea generalizes readily to latent variables and to
multivariate models. Instead of y(t), we can use g tð Þ 2
Rv to denote a vector of v latent variables. Each latent
variable may be measured by one or more observed
variables via a standard measurement model as is
common in structural equation modeling (SEM) (i.e.,
y tð Þ ¼ Kg tð Þ þ sþ e tð Þ; cf. Bollen, 1989). The vector
of latent change variables Dg Dtuð Þ may thus be
defined as

Dg Dtuð Þ ¼ g tuð Þ�g tu�1ð Þ
Dtu

: (3)

The index u denotes the measurement occasion at
time point t, highlighting that the difference is always
computed between two discrete measurement occa-
sions at tu and at tu�1. In current practice, the time
interval is almost always assumed to be Dtu ¼ 1. With
this simplification, the multivariate latent change score
formulation of Equation 2 can be written as

Dg tuð Þ ¼ A† � g tu�1ð Þ þ f tuð Þ; (4)

with f tuð Þ 2 Rv denoting a vector of v error terms and
A† 2 Rv�v denoting a v� v matrix of regression

Figure 2. Example of a bivariate autoregressive cross-lagged model for estimating the effect of serotonin on social anxiety. (A)
Time interval Dt ¼ 24 days between measurement occasions. (B) Time interval Dt ¼ 6 six days between measurement occasions.
The effect of social anxiety on serotonin is fixed to zero in both models. The three dots to the right of each panel indicate that in
both examples the time series continues until the final measurement occasion.
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coefficients. The model shown in Equation 4 is often
referred to as a proportional change score model,
because change in the vector of dependent variables
Dg tuð Þ is proportional to the previous level g tu�1ð Þ.
That is, future changes increase or decrease propor-
tionally to the level in the past (McArdle &
Hamagami, 2004; Voelkle & Oud, 2015).

Note that the dynamic error term f tuð Þ in Equation
4 is very important. Without an error component, the
model implies that perfect prediction of the latent
state of the system may be made, if the system has
been measured well enough. In dynamic models with
an error component in the dynamics, the latent state
is allowed to fluctuate due to unpredictable influences,
and the system can never be perfectly predicted.

Continuous time dynamic models
Although in the field of econometrics continuous time
dynamic models have existed much longer than latent
change score models (cf. Bergstrom, 1988), they are
only slowly diffusing into psychological research (see
Chow, Lu, Sherwood, & Zhu, 2016; Oravecz,
Tuerlinckx, & Vandekerckhove, 2009, 2011, 2016; Ou,
Hunter, & Chow, 2017; Oud & Jansen, 2000; Oud &
Singer, 2008; Singer, 2010, 2011, 2012; Voelkle &
Oud, 2013 for examples). From the latent change
score formulation in Equation 3, it is only a small
step to a continuous time model. Instead of comput-
ing the difference in g over two discrete measurement
occasions divided by the length of the discrete time
interval (cf. Equation 3), we treat time as a continuous
variable and imagine that the time interval decreases
toward zero. The limit of this difference is the
derivative of g tð Þ with respect to time as shown in
Equation 5:

dg tð Þ
dt

:¼ lim
Dt!0

g tð Þ�g t�Dtð Þ
Dt

� �
: (5)

By letting Dt ! 0, we can also rewrite the propor-
tional change score model in Equation 4 in the differ-
ential equation form shown in Equation 6

dg tð Þ
dt

¼ A � g tð Þ þ e; (6)

which is the definition of a basic continuous time
model. The discrete time proportional latent change
score model in Equation 4 is a special case of a con-
tinuous time model for a specific discrete time inter-
val. As before, the vector g tð Þ 2 Rv contains the
number (v) of latent variables at each time point t.
A 2 Rv�v is the so-called drift matrix. The drift matrix
contains the continuous time effects of variables on
themselves (auto-effects) on the main diagonal and

the continuous time effects on other variables (cross-
effects) in the off-diagonals. e 2 Rv represents the con-
tinuous time error term with covariance matrix
Q 2 Rv�v. The continuous time covariance matrix Q
is also referred to as the diffusion matrix.2 Although
the math of stochastic differential calculus can become
quite complicated, for our purposes it suffices to
understand that by letting Dt ! 0 (i.e., taking the
derivative), we are no longer bound to any discrete
time interval for computing a latent change score.
Instead, we can compute the effects of interest (e.g.,
A) and the resulting error covariance matrices (i.e.,
Q) as a function of any arbitrary time interval. By
defining our “model for change” (Equation 6) inde-
pendently of the “data collection design,” we closely
follow the recommendation by McArdle (2009) cited
earlier. By treating time as a continuous variable,
however, the class of models defined in Equation 6
goes a step further than conventional latent change
score or cross-lagged panel models.

Although many psychological processes happen in
continuous time, their measurement is necessarily dis-
crete. The challenge is to estimate the continuous time
parameters, defined in Equation 6, from discrete meas-
urement occasions. To do so, we first need to solve the
stochastic differential Equation 6 for a given starting
point t0 and time interval Dt ¼ t�t0. Solving stochastic
differential equations can become very difficult and is
not always possible. Fortunately, the solution of the
simple model defined in Equation 6 is straightforward
(cf. Voelkle et al., 2012). Once the solution has been
obtained, we can formulate a model for the specific
measurement occasions that have been observed and
constrain the parameters to the solution of the stochas-
tic differential equation. Loosely speaking, we combine
the multivariate version of an autoregressive model as
defined in Equation 2 with the solution of Equation 6.
This result is shown in Equation 7:

g tuð Þ ¼A� Dtuð Þ � g tu�1ð Þ þ f tuð Þ with

f tuð Þ�N 0;Q� Dtuð Þð Þ: (7)

The asterisk in Equation 7 denotes that the parame-
ters in matrices A� Dtuð Þ and Q� Dtuð Þ, for the observed
discrete time interval Dtu, are a function of the solution
of Equation 6. For example, the solution of differential

2More precisely, e ¼ G dW tð Þ
dt , with W tð Þ 2 Rv denoting the Wiener

process, a random walk in continuous time. G 2 Rv�v is the Cholesky
matrix with diffusion matrix Q ¼ GGT. For a derivation of the exact
relationship between the discrete and continuous time error covariance
matrix, see Voelkle et al. (2012, Appendix C) and the additional references
provided therein. We also note that it is common (and in strict
mathematical terms more precise) to multiply both sides of Equation 6 by
dt, resulting in dg tð Þ ¼ Ag tð Þdt þ GdW tð Þ: We treat these expressions
as equivalent.
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equation
dg tð Þ
dt ¼ A � g tð Þ for time interval Dtu between

starting point t0 and measurement occasion u is
g tuð Þ ¼ eA�Dtu � g t0ð Þ (for a proof, see Appendix A in
Voelkle et al., 2012). Thus, in Equation 7 this result
corresponds to A� Dtuð Þ ¼ eA�Dtu .

Given a data set with an arbitrary number of meas-
urement occasions and time intervals between these
measurement occasions, we can fit a model as defined
in Equation 7, for example, by means of SEM. With
appropriately defined constraints, this estimation not
only yields discrete time parameter matrices such as
A� Dtuð Þ and Q� Dtuð Þ, but also the underlying con-
tinuous time parameter matrices A and Q as defined
in Equation 6. Based on these parameters, it is easy to
derive the corresponding discrete time estimates for
any time interval of interest. Put more generally, the
continuous time parameters in Equation 6 describe
the mechanisms of the actual behavior of the system,
which might only be observed at selected discrete
measurement occasions.

This approach resolves two problems raised in our
running example: How different time intervals should be
handled in the data analysis to obtain unbiased param-
eter estimates in the case of unequally spaced measure-
ment occasions? How different time intervals should be
handled in the interpretation of results when comparing
effects with each other that were estimated based on dif-
ferent time intervals? Instead of directly interpreting and
comparing parameters that are bound to a specific time
interval, such as a in Equation 2, we estimate the under-
lying continuous time parameters (e.g., A) from which

we then obtain the discrete time parameters A� Dtuð Þ for
a specified discrete time interval Dtu. Via this relation-
ship, we can derive the discrete time parameters for any
possible – observed or unobserved – time interval. This
is graphically illustrated in Figure 3 which shows how
the discrete time autoregressive (Panel A) and cross-
lagged (Panel B) parameter estimates change as a func-
tion of the time interval. As observed by the researcher
in our running example, discrete time parameter esti-
mates differ substantially for a six-day measurement
interval as opposed to a 24-day interval (see Figure 2).
By employing a continuous time instead of a discrete

time model, her analyses would yield a drift matrix of

A ¼ �0:0176 0
�0:0196 �0:0372

� �
. Given the relationship between

A and A� Dtuð Þ discussed before, for Dt ¼ 6 days, this

would result in A� Dt ¼ 6ð Þ ¼ e
�0:0176 0
�0:0196 �0:0372

� �
�6 ¼ 0:90 0

�0:1 0:8

� �

and for Dt ¼ 24 days,

A� Dt ¼ 24ð Þ ¼ e
�0:0176 0
�0:0196 �0:0372

� �
�24¼ 0:66 0

�0:25 0:41

� �
. The ele-

ments on the diagonal of A� Dtuð Þ are the autoregres-

sive coefficients of serotonin and social anxiety. The

nonzero off-diagonal element of A� Dtuð Þ is the cross-
lagged effect of serotonin on social anxiety. Note that

these effects correspond exactly to the effects observed

in the discrete time analyses presented in Figure 2.

Our researcher may thus conclude that the

Figure 3. Changes in discrete time autoregressive (A) and cross-lagged (B) parameter estimates (y-axis) as a function of the time
interval (x-axis). As observed by the researcher in our running example, discrete time parameter estimates differ substantially for a
six-day measurement interval as opposed to a 24-day interval, although the true underlying model in continuous time is identical.
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mechanisms underlying the development and the

relationship between serotonin and social anxiety for

the two individuals are likely the same. Any differen-

ces as shown in Figure 2 are due to differences in the

“data collection design” and not due to a different

“model for change” (cf. McArdle, 2009, p. 601).
Going beyond just two selected intervals, the

relationship between A and A� Dtuð Þ as a function of
intervals 0<Dt � 30, is illustrated in Figure 3A for
the autoregressive effects and in Figure 3B for the
cross-lagged effects. Although the discrete time
parameter estimates differ substantially as a function
of the measurement intervals, the generating continu-
ous time process is the same (i.e., the difference in
discrete time estimates can be perfectly explained by
the difference in time intervals).

Coming back to the original question of how
should different time intervals be handled in the ana-
lysis and interpretation of results, we may conclude
that continuous time modeling is a useful approach
for doing so. In contrast to discrete time models,
continuous time models prevent researchers arriving
at different conclusions regarding the presence and
size of an effect (e.g., from serotonin on social
anxiety) simply because of the use of different data
collection designs. Likewise, they prevent researchers
from incorrectly interpreting similar discrete time
effects, observed for different time intervals, as
evidence for replicability without realizing that the true
generating processes may have been very different.

However, discrete time analysis clearly has its place.
In particular, in case of equally spaced measurement
occasions with a high sampling frequency, which is
completely under the researchers’ control (e.g., neuro-
physiological measures such as EEG data), discrete
time models may be the better choice. They are
mathematically simpler and computationally faster.
Probably, the biggest disadvantage of continuous time
dynamic models is that they are more difficult to
implement in standard software packages. Only
recently have a number of software packages for con-
tinuous time dynamic modeling been developed that
overcome this limitation (e.g., ctsem, Driver, Oud, &
Voelkle, 2017; OpenMx, Neale et al., 2016; BHOUM,
Oravecz et al., 2016; dynr, Ou et al., 2017; see Singer,
1991, for an earlier program LSDE). By interfacing to
OpenMx (Neale et al., 2016) and Stan (Carpenter
et al., 2017; Stan Development Team, 2016), which are
two powerful general purpose packages for frequentist
and Bayesian data analysis, respectively, the R-package
ctsem, for example, provides a user-friendly way to

specify, estimate, and plot continuous time dynamic
models. The software permits the analyses of time ser-
ies data (T ¼ large and N ¼ 1 or small) as well as
panel data (N ¼ large with T typically being small)
and allows the basic model introduced in this para-
graph to be extended in various ways. Most import-
antly, it permits (a) the estimation of multivariate
reciprocal effects along with exogenous inputs (i.e.,
time-independent and time-dependent predictors) and
(b) offers various options to account for heterogeneity
across individuals, as discussed next.

Multivariate dynamic systems and interventions

The study of psychological mechanisms usually
involves more than just one or two variables and
effects are often not limited to unidirectional ones.
Although the previously introduced mathematical
models generalize readily to these cases, we want to
draw attention to the role of time in interpreting such
multivariate relationships. Without carefully consider-
ing the role of time in multivariate dynamic systems,
one can easily arrive at contradictory conclusions. For
example, as already suspected by the researcher from
our running example, the effect of serotonin on social
anxiety is unlikely to be a one-way effect. Rather,
changes in social anxiety may also affect the levels of
serotonin because a person experiencing increased lev-
els of social anxiety may react by increasing the drug
dosage. Furthermore, additional variables, such as
social withdrawal behavior, may be important factors
to consider when studying the relationship between
social anxiety and serotonin. With three constructs,
there exist six possible effects (lead-lag relationships)
over time. Although in a stable bivariate model, the
size of two discrete time effects may differ as a func-
tion of time, one will always remain stronger than the
other (see Figure 3). This result is no longer true in
the case of three or more variables. Figure 4 shows an
example with the three variables social anxiety, sero-
tonin, and social withdrawal behavior. As can be seen in
Figure 4A, for time intervals between about one and
about four weeks, the predicted effect of social anxiety
on later serotonin is positive and is the strongest among
all positive effects. In contrast, for some other time
intervals (e.g., Dt ¼ 6), the effect is negative and com-
paratively weak. Thus, without considering how the
dynamics of the system play out over the entire time
range, it is easy to arrive at incorrect conclusions.

The importance of adequately accounting for time
in the interpretation of effects is not limited to direct
effects but generalizes readily to indirect effects. Recall
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that indirect effects are mediated by one or more
processes (Cole & Maxwell, 2003; Maxwell, Cole, &
Mitchell, 2011). In recent work, Deboeck and Preacher
(2016) have demonstrated how the decomposition into
direct, indirect, and total effects generalizes to continu-
ous time dynamic models and how the unfolding of
mediation effects over time can be visualized and tested.
Understanding how effects unfold and decompose over
time is particularly important when the goal is to
develop effective interventions. Although many experi-
mental studies settle for demonstrating the effect of an
intervention at a single point in time (i.e., the measure-
ment occasion), the researcher needs to keep in mind
that the observed effect size is almost always a function
of time. As illustrated in Figure 4B, in our example the
administration of an SSRI drug increases the level of

serotonin. Eventually, however, the effect will die out.
More importantly, the intervention effect not only dissi-
pates over time, but also leads to a decrease in social
withdrawal behavior. Although only an indirect conse-
quence of the intervention, the decrease in social with-
drawal behavior in turn will result in an increase in social
anxiety during the time period between about 4 and 8
weeks (dotted line). Without considering the complete
time course of the effect, this complex dynamic interplay
of the three variables would go undetected. For example,
a randomized pre-post-test design on the effectiveness of
an SSRI drug on social anxiety would suggest an increase
in social anxiety if the post-test were administered 6
weeks after drug administration (see Figure 4B).

By including input effects (i.e., time-dependent pre-
dictors) in Equations 6 and 7, we can study the time
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Figure 4. Example of a three-variate continuous time dynamic system of social anxiety, social withdrawal behavior, and serotonin.
(A) Discrete time cross-lagged effects as a function of the time interval. (B) Hypothetical intervention on serotonin (e.g., via admin-
istration of an SSRI drug) at a time point t0. (C) An alternative model with a single parameter modification as compared to the
dynamic system displayed in Panel A (awithdrawal,social anxiety ¼ –0.2). (D) The same intervention as displayed in Panel B, based on
the dynamic model shown in Panel C.
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course of such interventions. The impulse effect illus-
trated in Figure 4B, which is the instantaneous effect
of a single intervention (a single dosage of an SSRI
drug) on the level of a dependent variable (serotonin),
is one such possibility. Driver and Voelkle (in press-
b) present a detailed consideration of how to study
the time course of effects of interventions with con-
tinuous time dynamic models. They consider several
types of input effects, such as persistent level changes,
dissipative impulses, and oscillatory dissipation.

Considering the entire system and how effects
change over time is not only important for studying
the time course of interventions, it is also important
when the goal is to change the system (e.g., to break a
pathological system of relationships between social
anxiety, withdrawal behavior, and SSRI drug usage).
Imagine that our researcher had obtained a drift

matrix of A ¼
�0:3496 þ0:0863 þ0:6081
�0:1315 �0:2623 þ0:6512
�0:4992 �0:2825 �0:4153

2
4

3
5.

Remember that the drift matrix contains the auto-
and cross-effects of serotonin, social withdrawal
behavior, and social anxiety in continuous time. This
is the matrix underlying the pattern of effects shown
in Figure 4A and Figure 4B, and corresponds to a dis-
crete time autoregressive and cross-lagged matrix

A� Dt ¼ 1ð Þ ¼
þ0:6 60:0 þ0:4
�0:2 þ0:7 þ0:4
�0:3 �0:2 þ0:5

2
4

3
5, for a time

interval of Dt ¼ 1 week. As is apparent in Figure 4

(panels A and B), a one-time administration of an
SSRI drug to increase the level of serotonin is gener-
ally effective in the sense that it not only increases the
level of serotonin, but also decreases social withdrawal
behavior. While it initially also reduces social anxiety,
the increase in social anxiety after about four weeks
could be considered a negative side effect because it
leads to a strong reduction in social withdrawal
behavior. The key to avoiding this negative side effect
would be to break the link between social anxiety and
withdrawal behavior. An exposure therapy interven-
tion could be one way to achieve this. By experimen-
tally preventing withdrawal from a situation or
encouraging social interactions when a patient experi-
ences social anxiety, withdrawal behavior would no
longer be a consequence of social anxiety. Withdrawal
behavior would be fixed at a low level by the therap-
ist. If our researcher succeeded in changing the effect
of social anxiety on withdrawal behavior (i.e.,
a� Dt ¼ 1ð Þ ¼ þ0:4) from a positive effect into a small
negative effect (e.g., a� Dt ¼ 1ð Þ ¼ �0:2), the adverse

effects of the intervention would disappear. This result
is shown in Figure 4C and Figure 4D.

Formalizing and testing alternative dynamic models
that differ in the strength of the links among its com-
ponents and in how potential intervention effects play
out over time may provide useful insights into clinical
psychology and psychotherapy (see also Molenaar,
1987). Cognitive models of depression have long sug-
gested that the relationship between negative cogni-
tions and symptoms of depression constitutes a
vulnerability factor to depression. Unlinking these fac-
tors is considered key to the success of cognitive ther-
apy (Beevers & Miller, 2005).

To answer the question from our running example
of how can we model and interpret reciprocal and
mediation effects, and how do such effects manifest for
any given time interval, important insights may be
achieved if the researcher adopts a (multivariate)
dynamic systems perspective. In a complex system,
such as human cognition and behavior, a seemingly
straightforward intervention on one variable can have
complicated, potentially unintended, nonlinear effects
on other outcome variables that show up over time.
Simulating the consequences of an input by manipu-
lating a variable (e.g., by administering a drug) or by
changing the strength of the connection between two
variables (e.g., by reducing the effect of social anxiety
on withdrawal behavior) may lead to better under-
standing of such systems (e.g., the system illustrated
in Figure 4) and the identification of promising inter-
ventions. This conclusion will be particularly true for
complex models involving many variables. Although
any parameter interpretation hinges on a correctly
specified model, sensitivity analyses by means of sim-
ulations may also help to explore the potential impact
of omitted variables in a multivariate dynamic system.

The role of time in the study of between-
person differences and within-person changes

To sharpen the following discussion, it is useful to
distinguish between five potential study designs as
illustrated in Figure 5. Panel A shows a purely cross-
sectional design, in which all individuals i ¼ 1, … , N
are observed at a single time point t ¼ t0. Panel B shows
a time series design, in which a single individual i ¼ i0

is observed at multiple time points t ¼ 1, … , T. Both
are commonly used research designs, but not of focal
interest for this article, because there is only a single
source of variance in either design.

The distinct focus on either the BP and WP effects
no longer holds for panels C and D. Panel C shows a
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design in which the time and person dimensions are
perfectly crossed. Panel C is an example of a perfect
panel design, in which the same group of individuals is
observed at multiple time points. An important goal
when using such data is to leverage information from
multiple subjects in order to increase the precision of
estimates and to study possible influences on interindi-
vidual differences. Fundamental to achieving this goal is
to avoid confounding WP changes with BP differences.
This observation raises the question: How should we
deal with between-person differences in longitudinal panel
data analysis? Panel D shows a design in which the time
and person dimensions are both present but not crossed.

This is the case if cross-sectional data are available for
multiple individuals at a single point in time and time
series data are available for a single subject across
multiple time points. The researcher from our example
confronts this case: She wants to translate findings from
a BP cross-sectional study to a specific patient she has
been monitoring over time. How can we compare and
integrate results based on BP differences and those based
on WP changes in our quest for causal mechanisms – or
should we? In the following section, we will deal with
the first question, before addressing the second.

The two conditions illustrated in Figure 5, panels C
and D represent two idealized research designs. This

Figure 5. Illustration of five different study designs: A) time dimension is absent (t ¼ t’; cross-sectional design); B) person
dimension is absent (i ¼ i’; time series design); C) person and time dimensions are perfectly crossed (all individuals are observed
at all time points; panel design); D) person and time dimensions are not crossed (cross-sectional data at t ¼ t’ and time series data for
i ¼ i’); E) partially crossed design (some individuals are observed at the same time points; panel design with missing data).
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distinction is useful in that it keeps separate the dis-
cussion of how we should analyze panel data (dimen-
sions are fully crossed) from the discussion on the
(in)compatibility of cross-sectional BP research and
longitudinal WP research (dimensions are not
crossed). In practice, the two dimensions may often
be partially crossed as illustrated in Panel E. In this
case, the two questions become at least partially con-
founded and need to be addressed depending on the
research question and the location of the study design
on the continuum between the two idealized condi-
tions displayed in Panel C and Panel D.

Between-person differences in longitudinal panel
data analysis

Inference on (causal) mechanisms may be based on
BP data or WP data. Panel studies combine both types
of data, providing advantages for improving causal
inference, but also introducing new challenges for
analyses. For a comprehensive introduction to causal
inference in general, and from panel data in particu-
lar, see Morgan and Winship (2015), Imbens and
Wooldridge (2009), and Hsiao (2014). In the follow-
ing, we want to focus on one important challenge,
namely, how to deal with unobserved unit hetero-
geneity. Unit heterogeneity refers to stable differences
between units (typically people, i.e., BP differences) in
the outcomes of interest. If the source of heterogeneity
is known (e.g., sex differences), one speaks of
observed heterogeneity that may be directly controlled
for because its source is known. Often, however, the
reasons for unit heterogeneity are many and varied,
and so while some sources may be observed, many
are not. If not adequately dealt with, the presence of
unobserved heterogeneity may bias parameter esti-
mates and result in incorrect conclusions. The infor-
mation available from multiple subjects may also help
to improve the estimation and avoid overfitting by
regularizing the WP parameters away from extreme
values (Bishop, 2006).

Unobserved heterogeneity as a source of
confounding
Unobserved heterogeneity may bias parameter esti-
mates in panel data analysis (cf. Halaby, 2004). One
example in psychological research has recently been
provided by Hamaker, Kuiper, and Grasman (2015),
who criticized the discrete time cross-lagged panel
model for its failure to adequately separate BP and
WP levels in the presence of unobserved heterogen-
eity. These authors observed that stable differences

across individuals are confounded with other (WP)
parameter estimates, most importantly the cross-
lagged effect parameters. As a solution, they proposed
the inclusion of a random intercept – the so-called
random intercept cross-lagged panel model (RI-
CLPM). Controlling for unobserved heterogeneity by
means of a random intercept can have dramatic
effects on one’s results. Using empirical data,
Hamaker et al. (2015) showed that high and signifi-
cant autoregressive and cross-lagged effects (e.g., an
autoregressive effect of .772 and cross-lagged effect of
.115, both p< .001) may change dramatically to small
and nonsignificant effects (.101 and .005, both p> .05)
after accounting for unobserved heterogeneity by
means of a random intercept.

By extending the latent state vector g tð Þ in
Equation 6 (i.e., by adding additional latent variables)
and constraining the corresponding auto-effect, the
mean, and diffusion variance to zero, one can easily
add random intercept terms to the continuous time
equation. Due to the matrix exponential constraint
described before (i.e., e0 ¼ 1; see Equation 7), the
resulting autoregressive effects equal one, so that the
freely estimated variances of the additional latent vari-
ables in g tð Þ capture all stable interindividual differen-
ces in the construct of interest. Technically, this
situation corresponds to a random intercept vector in
the stochastic differential equation, which is also
referred to as a “trait” (Oud & Jansen, 2000; p. 200,
Appendix A). This approach accounts for unit hetero-
geneity at the level of the latent variables. This
approach differs slightly from accounting for unit het-
erogeneity in the measurement model as done, for
example, in the RI-CLPM (Hamaker et al., 2015). In
the RI-CLPM stable individual differences are treated
as additive components at each observed measurement
occasion, without implications for the underlying tra-
jectory.3 Assuming that the model is identified, the
two approaches may even be combined. However,
identification may be rather complex and future
research on this topic is necessary.

The inclusion of random intercepts is not the only
way to deal with unobserved heterogeneity. As noted
by Bollen and Brand (2010): “Researchers sometimes
take false comfort in the use of the REM [random
effects panel model] in that it does include a latent
time-invariant variable (“individual heterogeneity”)
without realizing that biased coefficients might result
if the observed covariates are associated with the
latent time invariant variable” (p. 2). The so-called

3The package ctsem allows users to switch between these two
specifications.
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fixed effects panel models are often proposed as a bet-
ter alternative in such cases, because (unlike random
effects panel models) they do not assume independ-
ence between unit-specific effects and potential time-
varying regressors (Halaby, 2004). For example, by
regressing on N-1 dummy variables, for N individuals,
everyone would be assigned a person-specific intercept
in a fixed effects model, without the need for any add-
itional assumptions on distributions or covariances.

For dynamic panel models, fixed and random
effects approaches can result in biased parameter esti-
mates for finite T and N. Although various solutions
for this problem have been proposed in the economet-
ric literature (Arellano, 2003; Arellano & Bond, 1991),
this remains an active field of research, with none of
the proposed approaches being uniformly superior in
terms of consistency, bias, and efficiency (Kiviet,
1995). Bollen and Brand (2010) recently proposed an
SEM-based general panel model that incorporates
both fixed and random effects. In their general panel
model, traditional random and fixed effects can be
considered as two special cases, which not only allows
for a direct comparison of the two specifications, but
also a mixture between the two (see also Allison,
Williams, & Moral-Benito, 2017). This approach not
only allows completely new modeling options, but
(because of the SEM specification) also opens up the
use of the fixed effects approach to dealing with unob-
served heterogeneity in continuous time modeling. To
the best of our knowledge, this has not yet been done;
we encourage future research in this direction.

Unobserved heterogeneity as a source of
information
Arguably, the most flexible approach is a fully hier-
archical model, in which all parameters can vary
across individuals, but information is still shared
across individuals. This model includes all previously
discussed models as special cases. In this model, a
pure person-specific modeling approach (where a sep-
arate model is fit independently to each individual)
and a modeling approach that ignores all BP differen-
ces (i.e., fits the same model to all individuals) repre-
sent the two extreme ends on a continuum.

The person-specific approach will yield consistent
parameter estimates as T increases. However, the
number of time points required for reasonable infer-
ence on even modestly complex models can be very
large. A further issue is that finite sample biases, such
as that seen in the autoregressive parameter (Marriott
& Pope, 1954), ensure that in typical contexts, the
person-specific approach suffers from both high

uncertainty of the estimates and substantial biases.
Although the other extreme of ignoring BP differences
is also untenable (for reasons already discussed), the
random effects approach may be seen as a middle-
ground between the two extremes. Rather than either
“no variation in parameters across subjects” or
“entirely independently estimated parameters across
subjects,” the random effects approach results in sub-
ject-level parameters that are based on a mixture of
WP and BP information. In a frequentist random
effects formulation, wherein the subject-level parame-
ters are not directly estimated but rather only the
population distribution of the parameters is estimated,
this result is not always so apparent. However, if one
considers a typical Bayesian approach, in which the
subject-level parameters are estimated along with the
population distribution, the population distribution
provides the prior for the subject-level parameters.
This prior then results in a regularization of the sub-
ject-level parameters away from extremes, toward the
population mean – with the extent of this regulariza-
tion being dependent on how much information is
available for the specific subject and the population as
a whole (Bishop, 2006). If the variance of the random
effects was fixed in advance to zero, the model is
equivalent to the “ignore BP differences” approach;
conversely, the model approaches that of the “person-
specific, independent parameters” approach (Driver &
Voelkle, in press-a) if the variance was fixed to a very
high value. By estimating the variance, we can, to a
reasonable extent, optimize parameter estimation in
that both BP and WP sources of information are opti-
mally leveraged.

For identification and estimation purposes, certain
constraints on the population distribution of the
parameters may be necessary. The assumption of a
normally distributed intercept with zero mean and a
certain variance in the RI-CLPM is an example of
such a constraint. In addition, certain caveats apply,
such as requiring a sufficiently complex model to
accommodate all individuals (see Liu, 2017). For com-
plex models with multiple individually varying param-
eters, a hierarchical Bayesian formulation offers the
necessary flexibility for model specification and esti-
mation. These models require that hyperpriors on the
population distribution of model parameters need to
be specified; the hyperpriors determine the degree to
which parameters can differ across individuals. For
work on hierarchical Bayesian continuous time
dynamic models in psychological research, see
Oravezc et al. (2009, 2011, 2016), and for a recent
extension of the ctsem software to fully hierarchical
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Bayesian models by means of stan, see Driver and
Voelkle (in press-a).

In this section, we have outlined different
approaches to address the researcher’s question how
should she deal with between-person differences in
longitudinal panel data analysis? Most importantly,
unit heterogeneity should be recognized and repre-
sented in the model to avoid the risk of confounded
and substantively meaningless parameter estimates.
Random and fixed effects approaches are both suitable
to account for such unobserved heterogeneity, with
each having advantages and disadvantages depending
on the situation. By specifying hyperpriors, hierarch-
ical Bayesian models allow users to determine
the degree to which they may allow for individual
differences in parameter estimates, ranging from no
differences across all individuals to independent
parameter estimates for each individual as the two
end points on this continuum.

Between-person differences and within-person
changes in the quest for causal mechanisms

We now turn to the situation when the time and
person dimension are not crossed (see Figure 5D). In
our running example, the researcher was worried by
the perceived discrepancy between the medium-to-
strong negative correlation of serotonin and social
anxiety reported in previous cross-sectional studies
and her own clinical experience with her individual
patients. Indeed, as will be shown in the next section,
from a statistical perspective, the assumptions neces-
sary for a straightforward generalization from a BP
finding to an individual are unlikely to be met.
However, does this imply that nothing can be learned
from BP differences about WP effects? Should our
researcher ignore findings from cross-sectional (BP)
studies when aiming to understand the relationship
between serotonin and social anxiety in a given
patient? After first considering the statistical perspec-
tive, we will next argue from a causal perspective that
such a conclusion seems premature. We will then
outline a way to reconcile these two perspectives.

The statistical perspective
From a statistical perspective, it is not surprising that
an effect observed at the BP level may be very differ-
ent from an effect observed at the WP level. What
is surprising and somewhat bewildering is the ease
with which researchers sometimes switch between the
two levels in the interpretation and communication of
findings related to complex psychological constructs

such as personality or intelligence (cf. Borsboom,
Mellenbergh, & van Heerden, 2003; Borsboom &
Dolan, 2006; Franic, Borsboom, Dolan, & Boomsma,
2014; Valsiner, 1986; see Kluckhohn & Murray, 1953
for a classic treatment). With a “a manifesto on psych-
ology as idiographic science,” Molenaar (2004, p. 201)
demonstrated these problems to the scientific commu-
nity by providing a proof that, from a mathematical
statistical perspective, a generalization from the BP level
to the WP level is usually not warranted. Based on
classic theorems of ergodic theory, he argued that “only
under very strict conditions – which are hardly obtained
in real psychological processes – can a generalization be
made from a structure of interindividual variation to
the analogous structure of intraindividual variation”
(Molenaar, 2004, p. 201). For such a generalization to be
valid, the same model needs to apply to all individuals
(homogeneity) and all individual processes need to be
stationary, containing no systematic trends or cycles.
Homogeneity and stationarity are the two conditions
for so-called “ergodicity” (Molenaar & Campbell, 2009,
p. 113; Molenaar, 2004, pp. 206–207; making some
simplifying assumptions, such as multivariate normality).
Appendix A provides a formal statement of the condi-
tions under which ergodicity will be met.

Given that there are systematic interindividual
differences (heterogeneity) as well as systematic
changes (non-stationarity) in almost all psychological
constructs, the observation of the researcher from our
running example should not come as a surprise nor
should the lack of generalizability from BP findings to
WP findings and vice versa. It is this disconnect that
underlies the call for a “new person-specific paradigm”
in psychology (Molenaar & Campbell, 2009, p. 112).
From this statistical perspective, the researcher from our
example would be well-advised not to rely on existing
cross-sectional studies when her goal is to understand
and treat an individual patient. This insight implies
that, despite the effectiveness of SSRIs demonstrated in
previous RCTs, our researcher cannot know whether an
SSRI drug will be effective for a given patient without
homogeneity assumptions.

The causal perspective
Instead of taking a statistical perspective and asking
under which conditions BP and WP estimates will be
equivalent, we can also ask what caused the data?
It is this slight change from a statistical perspective to
a causal perspective that may result in a somewhat
different recommendation to our researcher.

For the purpose of the present article, we adopt
the general definition of a causal effect as the
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interventional distribution P Y ¼ yjdo x�ð Þ;M� �
for a

given Model M (cf. Hauser & B€uhlmann, 2015; Pearl,
1995, 2009; Shpitser & Pearl, 2006). The do() operator
simulates an external intervention by setting the value
of a variable X to a fixed value x�. The action of setting
X to x�, as compared to passively observing X ¼ x�, is
denoted by do(x�). Of importance, setting X to a spe-
cific value x� implies “wiping out” the equation from
model M that usually determines the value of X and
replacing it by the equality X ¼ x�. The corresponding
probability for Y ¼ y, given the intervention do(x�) is
P Y ¼ yjdo x�ð Þ� �

. Note that the intervention do(x�) may
be purely hypothetical. To define and identify a causal
effect, it is not necessary that it is actually possible to
manipulate the physical world by setting X to x�.
Furthermore, in its general form, the definition of a
causal effect as the interventional distribution
P Y ¼ yjdo x�ð Þ;M� �

is not restricted by any parametric
assumptions. In practice, however, it is often useful to
assume a parametric model and to focus on specific
aspects of a causal effect, such as the expected change
in a dependent variable Y for a marginal change in
the interventional level x� for model M and parameter
vector h as shown in Equation 8:

d
dx0

E Y ¼ yjdo x0ð Þ;M hð Þ� �
: (8)

For illustration, but without loss of generality, we
will focus on this specific notion of a causal
effect as the sensitivity of the mean of Y to changes
in the interventional level x� (mean vectors Y and
X in case of multiple dependent and independ-
ent variables).

Building upon graph theory, Pearl and others
(Pearl, 2009; Shpitser & Pearl, 2006) have developed a
set of mathematical rules to decide whether or not a
causal effect is identified and can be inferred from
observational data. These rules are based on the so-
called directed acyclical graphs (DAGs), graphical repre-
sentations of a model M. In the following, we propose
that DAGs can be used for causal inference, irrespective
of whether the data are collected at the BP level or the
WP level, and that we can use the same set of mathem-
atical rules for causal effect identification. This idea is
illustrated in Figure 6, and a proof-of-concept is pro-
vided in Appendix B.

Figure 6 shows two different DAGs to infer a
causal effect of X on Y. Panel A in Figure 6 shows a
BP model based on i ¼ 1,… , N independent individ-
uals for a given time point t ¼ t�, whereas Panel B
shows a WP model based on t ¼ 1,… , T (here, T ¼
3) dependent time points for a given individual i ¼
i�. In line with our running example, variable X may

represent serotonin, Y may represent social anxiety,
and Z may represent sex. The causal quantity, as
defined in Equation 8, is equal to bBPYX for the effect of
serotonin on social anxiety. From the corresponding
DAG, it is apparent that we can identify the causal
effect from purely observational data if we control for
variable Z (i.e., by applying the so-called back-door
criterion; Pearl, 2009). Likewise, in the WP model
illustrated in Figure 6B, we can identify the causal
effect quantity bWP

YX of serotonin at t ¼ 2 on social
anxiety at t ¼ 3 by controlling for (a) variable Xt¼1,
or (b) Yt¼2, or (c) variables Xt¼1 and Yt¼2 (for proof,
see Appendix B).

Although statistically the BP relationship between Y
and X is unlikely to be identical to the WP relation-
ship between Y and X, this example illustrates that it
is possible to infer causal information about the effect
of X on Y from either the BP model MBP or the WP
model MWP. Of importance, the conditions under
which such causal inference is possible differ across
the BP and WP model: First, the two DAGs (i.e.,
model structure MBP vs. MWP) differ and, second,
we need to adjust for different sets of variables for
causal identification (i.e., controlling for {Z} in the BP
model vs. controlling for {Xt ¼ 1}, {Yt ¼ 2} or {Xt ¼ 1,
Yt ¼ 2} in the WP model). In addition, the number of
parameters in the BP and WP model may differ (i.e.,
the length of hWP

i¼i� vs. hBPt¼t�may differ).

Toward a unified paradigm
To reconcile the statistical fact that a generalization
from the BP level to the WP level is usually not war-
ranted with the insight that both levels may contribute
to a better understanding of the same psychological
mechanisms, Voelkle, Brose, Schmiedek, and
Lindenberger (2014) highlighted the importance of
distinguishing between parameters that are unique to
a BP or WP model and parameters that are common
to both. In the following, we denote the former by
subscript u, and the latter by subscript c. Instead of
simply comparing hWP

i¼i� to hBPt¼t�, this allows us to test
for conditional equivalence by controlling for factors
that are unique to either the BP or WP level (i.e., to

compare hWP
c; i¼i�jhWP

u; i¼i�

� �
to hBPc;t¼t�jhBPu; t¼t�

� �
).

For example, the effects hBPu; t¼t�¼ fbBPXZ; bBPYZg of
variable Z in Figure 6A represent sex differences in
serotonin and social anxiety. These effects are unique
to the BP model and may explain part of the uncondi-
tional relationship between serotonin and social anx-
iety (e.g., Nishizawa et al., 1997). Given that sex
differences only exist between different people, it is
neither necessary nor possible to explicitly control for
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Z at the WP level. However, unlike at the BP level,
there exist serial dependencies between measures
across time, captured by the parameters

hWP
u; i¼i�¼ fbWP

X ; bWP
Y g, which are unique to the WP

level. Before drawing any comparisons regarding the
effect of X on Y, which is captured by the common

parameter hBPc;t¼t�¼ fbBPXZg¼? hWP
c;i¼i�¼ fbWP

XZ g, it is neces-

sary to control for factors that are unique to either of
these two levels. The comparison can be carried out,

for example, by means of likelihood ratio tests as
described in detail by Voelkle et al. (2012, 2014).

The problem with this approach is that there exist
many different factors that could be controlled for at
either level, and previous research has been mute on
how to choose them. We propose to solve this prob-
lem by means of DAGs and existing rules for causal
identification (such as the backdoor or frontdoor cri-
terion, Pearl, 2009), so that the common parameters

Figure 6. Two illustrative examples of a BP model (A) and a WP model (B). Each model is graphically illustrated by a directed
acyclical graph (above the dashed lines). The causal effects of interest are X!Y in the BP model and Xt¼2 ! Xt¼3 in the WP
model. The corresponding interventional distributions are shown below the dashed lines. Identification of the marginal causal
effect of X on Y may be achieved by controlling for Z in Model A. Identification of the marginal causal effect of Xt¼2 on Yt¼3 may
be achieved by controlling for Yt¼2, Xt¼1 or fYt¼2; Xt¼1g in Model B.
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capture the causal mechanisms of interest. Although
the modeling should be done in a single step (see
Voelkle et al., 2014), it is heuristically useful to think
of this as a three-step process: First, we make use of
the well-established causal inference machinery based
on DAGs to obtain an estimate of the causal effect X
on Y from a BP model MBP. Second, we use the
same machinery to obtain an estimate of the causal
effect of X on Y from the WP model MWP. Third, if
steps 1 and 2 are successful, then the two causal
effects may be tested against each other. Only in the
case of equivalence is it viable to generalize from the
BP level to a causal mechanism at the WP level or
vice versa. Only in that case would it be justified to
administer a certain intervention to an individual
patient based on a causal structure that was originally
inferred from a BP study and then found to
adequately represent this specific patient’s WP data.
For example, our researcher could directly translate
the average causal effect of serotonin on social anxiety
from an RCT to a given patient.

Obviously, in the social and behavioral sciences
such perfect equivalence seems unlikely, and, depend-
ing on the research question, researchers may resort
to different criteria to determine equivalence (cf.
Anderson & Maxwell, 2016). Likewise, the comparison
of a single BP structure for t ¼ t0 and fixed N, with a
single WP structure for i ¼ i0 and fixed T, constitutes
an extreme condition (see Figure 5D). This condition
was deliberately chosen to sharpen the discussion and
illustrate our arguments but may not be prototypical
for applied research. With sufficiently many time
points and individuals, there is also no need for such
comparisons. In practice, such comparisons become
increasingly relevant when (a) individual differences
exist in the degree of equivalence and (b) the amount
of available data differs at the BP and WP level.
Regarding (a), Brose, Voelkle, L€ovd�en, Lindenberger,
and Schmiedek (2015) made use of the COGITO data
to assess the degree of BP and WP equivalence in the
structure of affect by means of likelihood ratio tests as
outlined above. They rank-ordered individuals based
on the degree of (non-) equivalence and demonstrated
that the degree of non-equivalence is related to well-
being and stress. Regarding (b), especially in clinical
settings, a treatment decision on an individual patient
is often necessary upon the first encounter with this
patient. For example, our practicing clinician may
need to decide at intake whether or not to prescribe a
new patient an SSRI drug. No longitudinal WP infor-
mation is available for this patient so that this deci-
sion can only be made based on BP information (i.e.,

previous RCTs). However, after the patient returns for
several follow-up visits, WP data on the effectiveness of
the treatment become available. With increasing WP
information (increasing T), the question arises whether
the observed WP effect is equivalent or deviates from
the initially expected BP effect. How to optimally inte-
grate BP and WP information in the improvement of
medical decision-making remains an important task for
future research. A naïve approach, for example, could be
to base the individual treatment decision on the average
causal effect estimate from the BP information until the
accumulated evidence at the WP level suggests a (signifi-
cant) deviation from the expected BP causal
effect estimate.

Returning to the question of the researcher from
our running example (how can we compare and inte-
grate results based on BP differences and results on WP
changes in our quest for causal mechanisms – or
should we?) we conclude the following: As pointed out
by Molenaar and others (2004; Molenaar & Campbell,
2009; Valsiner, 1986), from a statistical perspective a
generalization of results based on BP difference to
WP changes is only justified under very strict assump-
tions, which are unlikely to be valid in practice. Thus,
great caution is indicated when the goal is to infer
WP relationships from BP data or vice versa. Both
levels, however, can be informative for causal infer-
ence. Based on rules for causal inference by means of
DAGs, our researcher can decide which variables to
control for (or not control for) at either level.
Conditional on these variables she can assess the
degree of equivalence of those subsets of the BP and
WP model parameters that capture the causal effects
of interest. When the relevant parameters are reason-
ably similar, a generalization from the BP to the WP
level will be warranted; if they are not, such general-
ization is impossible.

Although we believe this approach to dealing with
the division of BP and WP research offers a more
practical and more nuanced perspective on how we
can – or should – integrate these different sources of
information, it is not without problems: First and
foremost, it hinges on a correctly specified causal
model (DAG). This limitation is shared with all causal
inference approaches based on DAGs. In practice, sen-
sitivity analyses and robustness checks are necessary
to safeguard against false conclusions due to incor-
rectly specified causal models. Second, a longitudinal
DAG, by definition, represents a discrete time model.
The causal parameters refer to a specific discrete time
interval. As illustrated in Figure 4, Panel B, the causal
effect of an input will manifest itself differently at

798 M. C. VOELKLE ET AL.



different time points. Thus, the comparison of a WP
to a BP causal effect depends on an adequately chosen
time interval. Continuous time modeling may help to
overcome this limitation because it permits the deriv-
ation of the expected discrete time effects for any
arbitrary time interval. In an exploratory way, one
could thus derive the time interval at which a WP
effect is most similar to a BP effect (e.g., by simple
plotting of the expected effects as shown Figure 4,
Panel B). Using a confirmatory approach, one could
specify the WP DAG at the (BP) time interval of
interest, prior to any comparisons of the WP to the
BP causal structure. In both cases, however, future
research seems necessary to test and refine the
approach to causal inference by paying closer atten-
tion to the role of time (cf. Zhang, Joffe, &
Small, 2011).

Discussion

Without considering time, the study of psychological
mechanisms is impossible. At the very least, the cause
must precede the effect in time, or else a cause-effect
relationship can be ruled out for most practical pur-
poses (Shadish, Cook, & Campbell, 2002). Even the
classical randomized controlled trial as the “gold
standard” for causal inference assumes that the treat-
ment takes place prior to the measurement of the
dependent variable (Holland, 1986; Shadish et al.,
2002) and that the effect size may depend on the time
interval between the treatment and the outcome meas-
urement (e.g., Figure 4, Panel B). Adequately consid-
ering the role of time in the study of psychological
mechanisms becomes even more important in obser-
vational longitudinal studies. Neither under laboratory
conditions nor in real life can the phenomena of
interest be continuously observed. In addition, the
outcome variables often exhibit complex relationships
across time with large WP variation and BP differen-
ces. How can we best make use of the available infor-
mation in analysis and interpretation? Along five
prototypical questions, we identified several common
problems in the longitudinal study of psychological
mechanisms and discussed how they can be resolved
by paying closer attention to the role of time.

To address the question “What statistical model
should one use to best understand possible mecha-
nisms?” we distinguished between two broad classes of
longitudinal models: static models and dynamic mod-
els. While both classes offer powerful approaches for
the analysis of change, we encouraged researchers to
consider the use of dynamic modeling approaches

when they seek to study psychological mechanisms.
With this recommendation, we echo McArdle’s (2009)
earlier call to start the analysis of longitudinal data
not by asking “What is your data collection design?”
but rather by asking “What is your model for
change?” (p. 601).

To address the question “How should different time
intervals be handled in the analysis and interpretation
of results?” we distinguished between discrete and
continuous time models. We recommend that the
time variable should usually not be discretized, but
rather treated as a continuous variable. Although this
is straightforward in static models of change, the situ-
ation is more complicated in dynamic models of
change. Building upon a short review of latent change
score models, we introduced the basic idea of continu-
ous time dynamic modeling that resolves many previ-
ous problems in treating time as a continuous variable
in dynamic models.

To address the question “How can we model and
interpret reciprocal and mediation effects and how do
such effects manifest for any given time interval?,” we
recommended researchers adopt a dynamic systems
perspective. We demonstrated how in a multivariate
system, apparently simple interventions (e.g., an
increase in serotonin in Figure 4B or D) may result in
complicated, potentially unintended, nonlinear effects
on other variables that only show up over time. We
distinguished between manipulating a variable in a
system (e.g., increasing the level of serotonin) and
changing the effect of one variable on another (e.g.,
decreasing, or eliminating, the effect of social anxiety
on withdrawal behavior; see Figure 4C) and sketched
how both may advance our understanding of psycho-
logical mechanisms (see also Butner, Gagnon, Geuss,
Lessard, & Story, 2015).

To address the question “How should we deal with
between-person differences in longitudinal panel data
analysis?,” we highlighted the dual role of BP differen-
ces as a potential source of confounding as well as a
source of information. To avoid confounded and sub-
stantively meaningless parameter estimates, we advised
researcher to carefully control for unobserved hetero-
geneity in longitudinal panel data. However, we also
recommended leveraging information from multiple
subjects to improve the precision of (WP) estimates.
It is important to note that these two recommenda-
tions generally do not contradict each other. Unless
we have a very large number of measurement occa-
sions per individual, a purely person-specific approach
(i.e., treating an individual as completely independent
of all other individuals) is likely to overfit the data
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and yield biased parameter estimates. Likewise, ignor-
ing unobserved heterogeneity (i.e., treating all individ-
uals alike) will result in confounded and substantively
meaningless parameter estimates, unless there are
indeed no systematic differences among individuals.
Leveraging both WP and BP sources of information,
according to the information provided by each source
(as is done by hierarchical models), effectively elimi-
nates the apparent contradiction.

To address the question “How can we compare and
integrate results based on BP differences and those
based on WP changes in our quest for causal mecha-
nisms – or should we?” researchers need to think hard
about the correct causal model at either level (e.g., by
formulating the corresponding DAGs). In practice,
these models can be expected to differ from each
other. Making use of rules for causal inference,
researchers should identify the variables that need to
be controlled (or not controlled) at either level before
assessing the degree of equivalence of BP and WP
model parameters that capture the causal effects of
interest, conditional on these factors. Given correctly
specified DAGs, adequately controlling for these fac-
tors permits the identification of common underlying
causal mechanisms and may thus provide a way to
unify the BP and WP research paradigms in psych-
ology (cf. Beltz, Wright, Sprague, & Molenaar, 2016;
Borsboom, Kievit, Cervone, & Hood, 2009; Cronbach,
1957, 1975; Voelkle et al., 2014). This effort at unifica-
tion requires the translation of theories into causal
structures that govern the evolution of
dynamic systems.

Current limitations and future directions

More than forty years ago, Baltes, Reese, and
Nesselroade remarked that “[w]hatever kind of theor-
etical model a given researcher chooses to adopt, it
seems fair to argue that a time-ordered analysis of net-
works of antecedent variables will be useful in under-
standing and controlling behavior” (1988, p. 106). Since
then, methodologists and statisticians have made great
progress in designing tools that facilitate the analysis
of multivariate longitudinal data. Nevertheless, two
broad categories of limitations continue to hamper
the “time-ordered analysis of networks of ante-
cedent variables” that Baltes and colleagues
were advocating.

First, statistical and computational difficulties con-
tinue to exist. In particular, multivariate continuous
time dynamic models of multiple latent processes can
be difficult to fit. While mathematically and in terms

of available software packages, there is no theoretical
upper limit for the number of manifest and latent var-
iables, at least for panel data, few researchers have
attempted to model more than just a few latent proc-
esses. Reasonably chosen (hyper)priors in Bayesian
model estimation may mitigate small sample problems
and problems of complexity, but computational prob-
lems remain and need to be addressed in future
research. Finding a solution to statistical and compu-
tational problems becomes even more important when
considering not only heterogeneity across individuals
but also heterogeneity across time. Although consider-
able attention has been devoted to the former, hetero-
geneity across time has been largely ignored in the
present article. With increasing durations of time ser-
ies data in psychological research, this problem
becomes increasingly pressing (for recent work on
changing dynamics in discrete time series, see
Bringmann et al., 2017; Molenaar, Sinclair, Rovine,
Ram, & Corneal, 2009; for work on continuous time
models, see Chen, Chow, & Hunter, in press; Oud &
Jansen, 2000).

The second impediment to progress is conceptual
in nature. While better software and increased com-
puting power will eventually overcome or attenuate
most statistical and computational problems, our per-
spective also points to an urgent need for theories
that specify the temporal properties of the system
under investigation with greater precision, based on
evidence about its components and their configur-
ation. Many researchers are quick to acknowledge that
human behavior is best understood as a highly flex-
ible, complex, dynamical system. However, this per-
spective is not reflected in the vast majority of
psychological research and theorizing, where
“dynamics” is often little more than a buzzword
(Voelkle, 2015). Theorizing about human behavior is
often poorly specified in the time domain. A useful
contrast is to examine examples of research on other
living systems that has made greater progress in
appreciating the role of time. A prominent example is
research on the heart, where knowledge about the
time constants of its components and their configur-
ation into a system has resulted in a thorough, non-
reductionist understanding of causality at the system
level (e.g., Noble, 2007, 2012). Given the increasing
availability of methods to study the dynamics of
human behavior (e.g., Boker & Wenger, 2007; Chow,
Ferrer, & Hsieh, 2009), the time has come to interro-
gate psychological theories on what they have to say
about the time constants and configuration of major
components of the hypothesized system.
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Bridging the gap between the development of for-
mal quantitative methods and their application is
important but not always easy. Better education and,
in particular, more interdisciplinary collaboration are
necessary to accomplish this task. As pointed out
before, both statistical models for studying human
dynamics and conceptual research on causal inference
from the observational data have improved signifi-
cantly in recent years (cf. Imbens & Rubin, 2015;
Imbens & Wooldridge, 2009; Morgan & Winship,
2015; Pearl, 2009). A better integration of these lines
of inquiry seems key in the search for psychological
mechanisms. Our hope is that the approach sketched
in the present paper is a first small step in
this direction.
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Appendix A

Let hWP
i¼i� be the parameter vector of a WP model

MWP hWP
i¼i�

� �
for a given individual i ¼ i�. Furthermore, let

hBPt¼t� be the parameter vector of a BP model MBP hBPt¼t�

� �
for a

given time point t ¼ t�. Equivalence of BP and WP parame-

ters for individual i ¼ i� and time point t ¼ t� is given if

hWP
i¼i� ¼ hBPt¼t�. For example, assuming multivariate normality

and a saturated model with free mean vector l and covariance

matrix R, that is, MBP hBPt¼t�¼ flt¼t�;Rt¼t�g
� �

and

MWP hWP
i¼i� ¼ fli¼i�;Ri¼i�g

� �
, the BP and WP structure for indi-

vidual i ¼ i� and time point t ¼ t� would be equivalent if

flt¼t�;Rt¼t�g ¼ fli¼i�;Ri¼i�g. Ergodicity is met if hWP
i ¼ hBPt for

all possible combinations of i ¼ 1, … , N and t ¼ 1, … , T.

Appendix B

The directed acyclical graph (DAG) displayed in Panel A of
Figure 6 corresponds to the following set of structural
equations:
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Under the intervention do x0ð Þ the structural equations
are given by the following:

Z
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0
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Since the system is recursive, it has a unique solution
given by the following:

Z
X
Y

0
@

1
Ajdo x0ð Þ ¼

eZ

x0

bBPYXx
0 þ bBPYZe

Z þ eY

0
@

1
A

Following the definition of a causal effect as given in
Equation 8, the causal effect of X on Y is given by the fol-
lowing:

d
dx0

E Yjdo x0ð Þ;MBP hBPð Þ� �
¼ d

dx0
E bBPYXx

0 þ bBPYZe
Z þ eY

� �
¼ bBPYX

The DAG displayed in Panel B of Figure 6 corresponds
to a first-order bivariate vector autoregressive process. The
corresponding equations together with the initial values
(t ¼ 1) are given by the following:

Xt

Yt

� �
¼ bWP

X 0

bWP
YX bWP

Y

 !
Xt�1

Yt�1

� �
þ eXt

eYt
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t ¼ 2; :::;T

Xt¼1
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� �
¼ eXt¼1

eYt¼1

� �

For T ¼ 3 occasions, the system of equations can be
equivalently expressed as follows:
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Under the intervention do x0t¼2

� �
, the equation Xt¼2 ¼

bWP
X Xt¼1 þ eXt¼2 is “wiped out” and replaced by the interven-

tional equation Xt¼2 ¼ x0t¼2. Thus, the system of equations
under the intervention do x0t¼2

� �
is given by the following:
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Because the system of equations is recursive, it has a
unique solution given by the following:
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Following the definition of a causal effect as given in
Equation 8, the causal effect of Xt¼2 on Yt¼3 is given by the
following:

d
dx0t¼2

E Yt¼3jdo x0t¼2

� �
;MWP hWPð Þ

� �

¼ d
dx0t¼2

E bWP
YX b
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YX x
0
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Y
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YX :
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