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Abstract
Growth mixture modeling is a common tool for longitudinal data analysis. One of the key assumptions of traditional
growth mixture modeling is that repeated measures within each class are normally distributed. When this normality
assumption is violated, traditional growth mixture modeling may provide misleading model estimation results and suffer
from nonconvergence. In this article, we propose a robust approach to growth mixture modeling based on conditional
medians and use Bayesian methods for model estimation and inferences. A simulation study is conducted to evaluate the
performance of this approach. It is found that the new approach has a higher convergence rate and less biased parameter
estimation than the traditional growth mixture modeling approach when data are skewed or have outliers. An empirical data
analysis is also provided to illustrate how the proposed method can be applied in practice.

Keywords Robust methods · Growth mixture modeling · Conditional medians · Asymmetric Laplace distribution

Modeling longitudinal data is an active area of research,
especially in the social and behavioral sciences. Longi-
tudinal data consist of repeated measurements from the
same individuals that are obtained at different occasions.
The main goals of a longitudinal study are to characterize
change in responses over time and investigate factors that
are associated with the change (Fitzmaurice, Laird, & Ware,
2012; Singer & Willett, 2003). Growth curve modeling
(Bollen & Curran, 2006; McArdle, 2009; Meredith & Tisak,
1990) is often used for longitudinal studies because it can
directly investigate within-subjects changes over time and
between-subjects differences in change. The main objec-
tives of this modeling approach are to describe an overall
trajectory that characterizes repeated responses and measure
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between-subjects differences around the overall growth tra-
jectory. Growth curve models can be estimated within both
a multilevel modeling framework and a structural equation
modeling framework and can be easily extended to include
more complex structural relationships (Bollen & Curran,
2006; McArdle & Epstein, 1987; Meredith & Tisak, 1990).

Growth curve modeling assumes that all observed
growth trajectories are sampled from a population that is
characterized by a single overall growth curve (Connell
& Frye, 2006; Muthén, 2004). A population, however,
may consist of several underlying groups that can be
characterized by different growth trajectories. In order to
accommodate heterogeneity in a population, researchers
have used finite mixture modeling (McLachlan & Peel,
2000) as a technique for finding qualitatively meaningful
latent groups. Growth mixture modeling (Muthén, 2004;
Muthén & Shedden, 1999), which is an extension of growth
curve modeling, assumes that a population consists of
multiple latent classes and that each class has a class-
specific growth trajectory. Growth mixture models have
been used in many research studies over the past few
decades. For example, Huang et al. (2011) used a growth
mixture model to identify distinct employment patterns
over 20 years and investigated the impact of drug use on
employment. Guay et al. (2021) used a growth mixture
model to identify latent groups of students that follow
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different trajectories of self-motivation over the course of
their time in secondary school and tried to characterize the
latent groups using different sources of relatedness.

Although growth mixture modeling has been increas-
ingly used in social and behavioral sciences over the past
few decades and is flexible in modeling growth trajectories,
there are several issues that researchers need to be aware
of (e.g., Bauer, 2007; Bauer and Curran, 2003; Hipp &
Bauer, 2006). We focus on two major issues in this article:
the violation of normality assumptions and nonconvergence
issues.

Traditional growth mixture models (GMMs) assume that
repeated measures are normally distributed within each
class. If data violate the normality assumption, a traditional
GMM may result in invalid statistical inferences, such as
biased estimation or the over-extraction of latent classes
(Bauer & Curran, 2003; Depaoli, Winter, Lai, & Guerra-
Peña, 2019; Muthén & Asparouhov, 2015). Numerous
robust methods have been proposed to relax the normality
assumption in growth mixture modeling. Lu and Zhang
(2014) assumed that either measurement errors or latent
growth factors (i.e., random effects) of GMM follow a t-
distribution to reduce any effects of outliers. Muthén and
Asparouhov (2015) imposed a skewed t-distribution on
latent growth factors to reduce the risk that GMM detects
spurious latent classes due to data with skewed distributions.
In addition, Depaoli et al. (2019) and Son et al. (2019)
conducted systematic simulation studies to investigate the
performance of GMM with latent growth factors following
normal, skewed-normal, and skewed t-distributions, and
concluded that mis-specifying the distributions in GMM,
especially fitting a traditional GMM to nonnormal data can
result in biased parameter estimation.

Recently, a quantile regression approach has been actively
used as a robust approach to longitudinal data analysis. A
quantile, which can be easily found in introductory statistics
books, is a value that corresponds to a specified proportion
of a sample (Gilchrist, 2000). Conventional regression
focuses on the mean of a dependent variable y conditional
on the values of given independent variables x. Quantile
regression extends this approach by allowing researchers
to investigate a conditional distribution of y given x at
various locations of y (i.e., quantiles) so that researchers
can globally understand the relationship between them
(Davino, Furno, & Vistocco, 2014; Koenker, 2005). As a
special case of quantile regression, median regression is a
method that models the conditional median of a dependent
variable as a function of independent variables. The median,
which is a quantile at level 0.5, is a natural measure of
centrality that can be used as an alternative to the mean
and is robust against outliers or skewed distributions. For
nonnormally distributed data, median regression can be

used as an alternative method to traditional mean-based
regression (Bassett & Koenker, 1978; Koenker & Bassett,
1982). In longitudinal research, He et al. (2003) used
median regression for longitudinal data and compared three
different estimators for median regression. Tong et al.
(2020) proposed a robust Bayesian growth curve model
based on conditional medians and showed that the proposed
method outperforms traditional growth curve modeling
when outlying observations exist. The conditional median-
based method has a high breakdown point against the
existence of outlying observations. Despite the robustness
and increasing popularity of median-based methods, they
have not yet been systematically implemented and evaluated
in growth mixture modeling.

The second issue we tackle is nonconvergence, which
can arise when model is misspecified or data are irregular
(Tueller & Lubke, 2010). Research has shown that several
factors, including model complexity, sample size, and latent
class separation can all prevent GMMs from converging
(e.g., Nylund, Asparouhov, & Muthén, 2007; Depaoli, 2013;
Depaoli et al., 2019; Tueller & Lubke, 2010; Muthén &
Asparouhov, 2015). In a Bayesian framework, employing
informative priors can help if sample size and latent class
separation are at fault (e.g., Depaoli, 2013). However, even
with a large sample size and well-separated latent classes,
nonconvergence can still occur if the number of latent classes
is over-specified (e.g., Liu & Hancock, 2014; Nylund et al.,
2007) or the distributional form of a GMM is ill-specified
(e.g., Depaoli, Winter, Lai, & Guerra-Peña, 2019; Guerra-
Peña, Garcı́a-batista, Depaoli, & Garrido, 2020).

To address the nonnormality and nonconvergence issues
in growth mixture modeling, we propose a robust approach
using conditional medians. Bayesian methods are used for
model estimation as a Bayesian approach enables incorpo-
rating prior information into model estimation and estimat-
ing complex models with advanced sampling algorithms. In
this approach, a likelihood needs to be specified for model
inferences. For growth mixture modeling using conditional
medians, we skillfully used an asymmetric Laplace distri-
bution for measurement errors since it provides a natural
way to use Markov chain Monte Carlo methods to estimate
a transformed model (Reich, Bondell, & Wang, 2010; Yu &
Moyeed, 2001). We conducted a simulation study to system-
atically investigate the performance of the proposed con-
ditional median-based Bayesian growth mixture modeling
approach under various data conditions. Model convergence
based on the proposed method is also evaluated.

This paper is structured as follows. We briefly review
growth curve modeling, followed by an introduction to
traditional growth mixture modeling based on conditional
means. We then propose the robust growth mixture model
based on conditional medians. Next, we present a simulation
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study to evaluate the performance of our proposed robust
growth mixture modeling. In the subsequent section, we
apply the proposed method using empirical data. Finally, we
conclude with discussion and recommendations.

Growthmixturemodeling based
on conditional medians

A brief review of growth curvemodels

Growth curve models characterize changes in responses
over time and estimate interindividual variability in those
changes. Suppose that individual i (i = 1, . . . , N) is
assessed at J time points. A typical growth curve model for
characterizing these repeated responses can be denoted as

yi = �bi + εi ,

bi = β + ui ,

where yi = (yi1, . . . , yiJ )T is a J × 1 vector of repeated
measures for individual i, � is a J × q matrix of factor
loadings, in which q is the number of latent growth factors,
εi is a J × 1 vector of measurement errors, bi is a q × 1
vector of latent growth factors, β is a q × 1 vector of latent
growth factor means, and ui is a q × 1 vector of random
effects that are independent of the measurement errors. The
elements of � determine the shape of trajectories such as
linear or quadratic forms. For example,

�T =
(

1 1 . . . 1
0 1 . . . J − 1

)
(1)

is for a linear growth curve. Traditional growth curve
models assume that εi and ui follow a multivariate normal
distribution such as

εi ∼ N(0, �), ui ∼ N(0, �),

where � is a J × J covariance matrix of measurement
errors, and � is a q × q covariance matrix of latent
growth factors. Growth curve models generally assume �

to be σ 2I , which indicates that measurement errors are
independent across J time points, given the latent growth
factors, with variances of σ 2. Combining all together, yi has
the following probability density function

f (yi |�) = �(�β, ���T + �),

where � is the set of all parameters, and � is the J -dimen-
sional multivariate normal probability density function with
mean �β and covariance matrix ���T + �.

A brief review of growthmixturemodels

Growth mixture models (GMMs) assume that a population
consists of a number of latent groups, and each group is

characterized by a unique growth trajectory. A growth curve
model can be seen as a special case of GMM with one latent
class.

The probability density function of yi in a GMM is
expressed as a finite mixture of G probability density functions,

f (yi |�) =
G∑

g=1

πgfg(yi |�g),

where πg is a mixing proportion for latent class g, which
indicates a probability that yi is drawn from latent class g

with probability density function fg , and �g is a set of class-
specific parameters for fg (�g ⊂ �). In a GMM, each latent
class describes a distinct growth trajectory such as

yi = �gbig + εi ,

big = βg + ui , (2)

where the subscript g indicates that a corresponding param-
eter or variable is class-specific. Traditional GMMs assume
that the measurement error and random effect variables
follow a multivariate normal distribution such as εi ∼
N(0, �g) and ui ∼ N(0, �g).

Growthmixturemodeling using conditional
medians

In this section, we build a growth mixture model based
on conditional medians that inherits robust properties from
the median. What immediately follows is an introduction to
median regression, which we use as a building block.

In median regression, conditional medians are modeled,
Q0.5(yi |xi ) = xT

i β0.5, where Q0.5(yi |xi ) represents a
conditional median of yi given xi . It can be rewritten as

yi = xT
i β0.5 + εi, Q0.5(εi |xi ) = 0,

where εi is a random error with median 0. The unknown
parameter β0.5 can be estimated by minimizing the
following sum of absolute residuals (Koenker & Bassett,
1978):

β̂0.5 = arg min
β

N∑
i=1

|yi − xT
i β0.5|. (3)

An asymmetric Laplace distribution (ALD) provides a
natural way to minimize the above sum of absolute residuals
and link to the maximum likelihood principle by assuming
yi follows an asymmetric Laplace distribution (Koenker &
Machado, 1999; Geraci & Bottai, 2007; Yu & Moyeed,
2001). If a variable ω follows an asymmetric Laplace
distribution, ω ∼ ALD(m, δ, τ ), its probability density
function is given as

f (ω|m, δ, τ ) = τ(1 − τ)

δ
exp{−1

δ
ρτ (ω − m)}, (4)
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where m is a location parameter equal to the τ th quantile
of ω, δ is a scale parameter, τ is an asymmetry parameter,
ρτ (ω) = ω(τ − I (ω < 0)), and I (·) is an indicator
function. In the case of the median, τ is equal to 0.5,
ρτ (ω) is equal to ρτ (ω) = |ω|

2 , and Eq. 4 becomes a
Laplace distribution, which is also referred to as a double
exponential distribution (Kotz, Kozubowski, & Podgórski,
2001). A Laplace distribution has a sharp peak around the
mean and has thicker tails than a normal distribution. If
we assume yi ∼ ALD(mi, δ, τ ) (i = 1, . . . , N) with
mi = xT

i β0.5 and τ = 0.5, the likelihood for N independent
observations is

L(β0.5, δ|y) ∝ δ−N exp

{
−

N∑
i=1

∣∣yi − xT
i β0.5

∣∣
2δ

}
. (5)

Minimizing Eq. 3 is equivalent to maximizing the likelihood
in Eq. 5 (Geraci & Bottai, 2007; Yu & Moyeed, 2001).

A growth mixture model based on conditional medians
can be constructed in a similar way. Given the traditional
growth mixture model in Eq. 2, and assuming the j th subject
belongs to latent class g, the growth mixture model based
on conditional medians can be written as

yij =λT
jgbig(0.5) + εij , with Q0.5(εij |big(0.5))=0

big(0.5) = βg(0.5) + ui
(6)

where λjg is the j th row of �g , big(0.5) is a vector of
latent growth factors for latent class g based on conditional
medians, βg(0.5) is a vector of latent growth factor means for
latent class g based on conditional medians, and the random
effect ui is assumed to be independent from εij , follow a
multivariate distribution with a mean of 0, and have a class-
specific covariance matrix of �g . In this paper, we assume
that ui follows a multivariate normal distribution for our
simulation study and empirical data analysis. Equation 6
implies that Q0.5(yij |big(0.5)) = λT

jgbig(0.5) for latent
class g. That is, a conditional median of yij given big(0.5)

is λT
jgbig(0.5) for latent class g. Since an asymmetric

Laplace distribution provides a natural way to deal with
parameter estimation of median regression, this study also
imposes that εij ∼ ALD(0, δ, 0.5). Thus, yij |big(0.5) ∼
ALD(mij , δ, 0.5), where mij = λT

jgbig(0.5) and δ is a scale
parameter for εij .

In the case of a linear growth mixture model, Equation 6
can be built using the following vector presentations and �

specified in Eq. 1:

big(0.5) = (bIg(0.5), bSg(0.5))
T , βg(0.5) =(βIg(0.5), βSg(0.5))

T ,

�g(0.5) =
(

σ 2
Ig(0.5) σISg(0.5)

σISg(0.5) σ 2
Sg(0.5)

)
,

where bIg(0.5) and bSg(0.5) are a random intercept and
random slope, respectively, that vary across individuals in
latent class g, and βIg(0.5) and βSg(0.5) are the average of

the intercepts and slopes, respectively, for latent class g. In
this model, the intercept is the initial level of conditional
medians, and the slope is the rate of change in conditional
medians over time. The σ 2

Ig(0.5) and σ 2
Sg(0.5) in �g(0.5)

represent the variability in bIg(0.5) and bSg(0.5), respectively,
and σISg(0.5) represents the covariance between bIg(0.5) and
bSg(0.5).

In this study, we use a Bayesian approach for our
model estimation and inference, as Bayesian methods
have many advantages (Lee, 2007). For example, prior
knowledge on parameters can be incorporated in model
estimation, which helps to get accurate parameter estimates.
In addition, posterior distributions of parameters can be
relatively easily obtained even for complex models by
using advanced statistical computing algorithms. In the
Bayesian framework, model estimation and inferences are
conducted based on a joint posterior distribution of model
parameters. In the proposed growth mixture model, direct
inferences from a joint posterior distribution are difficult
due to the complexity of the model. Thus, we used the
data augmentation technique (Tanner & Wong, 1987) and
Markov chain Monte Carlo (MCMC) techniques such as
Gibbs sampling to simulate samples from the posterior
distribution. The observed dataset {yi |i = 1, . . . , N} is
augmented by latent growth factors (bi), and latent variables
for the asymmetric Laplace distribution. Specifically, an
asymmetric Laplace distribution, y ∼ ALD(m, δ, τ ), can
be specified as the following mixture presentation using ν ∼
exp(δ) with mean δ and W ∼ N(0, 1) (Kotz, Kozubowski,
& Podgórski, 2001, Kozumi & Kobayashi, 2011)

y = m + ζν + ξ
√

δνW,

where

ζ = 1 − 2τ

τ(1 − τ)
, ξ2 = 2

τ(1 − τ)
,

and τ = 0.5 for the median.
With the aid of the mixture presentation of asymmetric

Laplace distribution and augmented data, the likelihood
function for observed data is

L(�|y,b, ν) =
N∏

i=1

⎡
⎣ G∑

g=1

πg

⎧⎨
⎩

J∏
j=1

f (yij |big(0.5), νij )

⎫⎬
⎭
⎤
⎦

∝
N∏

i=1

⎡
⎣ G∑

g=1

πg

⎧⎨
⎩

J∏
j=1

(
δgνij

)− 1
2

exp

(
− (yij − λT

jgbig(0.5) − ζνij )

2ξ2δgνij

)}]
.

If conjugate priors are used, Gibbs sampling can be easily
constructed for model inferences as we describe in the
Appendix.
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Model estimations in the following simulation study as
well as the empirical example are performed using rjags
(Plummer, 2017), which is an R (R Core Team, 2019) pack-
age that calls the software “Just Another Gibbs Sampler”
or JAGS (Plummer, 2003) in R. JAGS is a program
for Bayesian modeling and inferences. Sample JAGS
scripts used in the current study are provided in the sup-
plemental materials at https://github.com/CynthiaXinTong/
MedianGMM.git.

A simulation study

In this section, we evaluate the performance of the
proposed median growth mixture modeling approach and
compare that to the performance of traditional growth
mixture modeling under various conditions by manipulating
sample size, latent class separation, mixing proportion (i.e.,
latent class relative size), and population distribution. In
this simulation study, we evaluate convergence rate and
parameter estimates when the number of latent classes is the
same as its population model. Note that class enumeration
is a complicated issue and has been thoroughly investigated
in Kim et al. (2021).

Simulation design

For this simulation study, we generated data using a linear
growth mixture model with four measurement occasions
and two latent classes. For simplicity, we only allowed latent
growth factor means to vary across latent classes, and we
kept the variances for the measurement errors at the four
measurement occasions constant.1

Three different sample sizes (N = 300, 500, and 1000),
and two levels of class separation were considered. The
class separation was measured by the Mahalanobis distance,

which is given as � =
√

(μ1 − μ2)
T 	−1(μ1 − μ2), where

μ1 and μ2 are means for the two latent classes and 	 is the
shared covariance matrix of latent growth factors. One of
the two levels was set to be relatively low at 1.7 (condition
MD1), which can be seen as medium separation, and the
other one was set to be relatively high at 3.6 (condition
MD2), which can be seen as high separation (Depaoli,
Winter, Lai, & Guerra-Peña, 2019, Lubke & Neale, 2006;
Tueller & Lubke, 2010). These two levels of latent class
separations were set to compare the performance of the
proposed approach and the traditional approach to growth
mixture modeling without confounding effects due to poor

1It is common to assume that variance components are invariant over
latent classes in growth mixture modeling (e.g., Bauer and Curran,
2003; Depaoli, 2013; Hipp & Bauer, 2006, Son, Lee, Jang, Yang, &
Hong, 2019).

class separation. Latent classes were generated with two
different mixing proportions: unbalanced proportions (0.3,
0.7) and balanced proportions (0.5, 0.5). Values for the
population parameters were set to be similar to the ones
obtained from the empirical data analysis described in
the next section. Growth factor means for Class 1 were
(βI1, βS1)

T = (18, 0.8)T for both MD1 and MD2, and the
means for Class 2 were (βI2, βS2)

T = (15, 0.3)T for MD1
and (βI2, βS2)

T = (10, 0.3)T for MD2. Additionally, � =(
6 −0.27

−0.27 0.3

)
and σ 2 = 4 for both MD1 and MD2. As

shown in the empirical example in the next section, these
population parameter values are realistic in practice.

Four different types of population distributions within
each class were considered by manipulating the distribution
of the measurement errors (conditions D1 to D4). Data
of the D1 condition followed the normality assumption of
traditional growth mixture modeling with εij ∼ N(0, σ 2).
The D2 and D3 conditions were for evaluating the model
performance when samples have outliers. Measurement
errors for the D2 and D3 conditions were first generated
using N(0, σ 2), and 5% and 10% of subjects were randomly
selected, respectively, to have outliers for an arbitrarily
selected one out of the four measurement occasions. The
outliers were generated to be extremely higher than the
majority of observations by using εij ∼ N(Mσ, σ 2),
where M was randomly selected from {5, 8, 10} with
probabilities 0.2, 0.5, and 0.3, respectively. Lastly, the
D4 condition was included to evaluate performance when
samples have a skewed distribution. Measurement errors
were first generated from LogNormal(0, 1), and then the
generated values were rescaled to have a mean of 0 and
a variance of σ 2. In total, there were 48 data generation
conditions in this simulation study (2 mixing proportions ×
2 class separations × 3 sample sizes × 4 error distributions).
For each condition, 500 datasets were generated.

Estimation

A linear median-based growth mixture model and a tradi-
tional mean-based growth mixture model were fit to each
dataset for the purpose of assessing and comparing the
performance. For the traditional growth mixture model,
we used weakly informative priors (e.g., Lu, Zhang, &
Lubke, 2011; Zhang, 2016) as follows: βIg ∼ N(0, 102),
βSg ∼ N(0, 10), σ 2 ∼ InvGamma(0.1, 0.1), �g ∼
InvWishart (I 2, 3), where I 2 is a 2 × 2 identity matrix,
and π ∼ Dirichlet (15, 25) for the unbalanced mix-
ing proportion condition and π ∼ Dirichlet (25, 25) for
the balanced mixing proportion condition. For the median
growth mixture model, the scale parameter δ had prior
δ ∼ InvGamma(0.1, 0.1), and the rest of the priors were
the same as the priors for the traditional growth mixture

https://github.com/CynthiaXinTong/MedianGMM.git
https://github.com/CynthiaXinTong/MedianGMM.git
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model. It is possible for growth mixture models to have
several local solutions (Hipp & Bauer, 2006). The infor-
mative prior on π was used for our Bayesian estimation to
avoid chains converging to local solutions (in real data anal-
yses, multiple chains can be used to avoid getting a local
solution) and recover proper latent classes.2 Additionally,
we put constraints on the mean intercept parameters such
that βI1 > βI2 to avoid within-chain label switching. The
number of total iterations for each chain was initially set to
10,000 with the first half of the iterations used for the burn-
in period. When a chain did not converge within 10,000
iterations, the total number of chains increased to 100,000.
Convergence of chains was assessed using Geweke’s con-
vergence test (Geweke, 1991). The chains with Geweke’s
statistic values less than 2 were deemed converged, and
results were summarized using converged chains.

Parameter estimates were evaluated using relative bias,
and mean squared error (MSE). Relative bias was obtained

using the following equation: 1
R

∑R
r=1

(
θ̂r−θp

θp

)
, where R is

the number of converged replications, θp is the population
value, and θ̂r is the posterior mean for the parameter
obtained from the rth replication. MSE was obtained using
the following equation: 1

R

∑R
r=1(θ̂r − θp)2. We additionally

reported coverage rates of 95% credible intervals to
investigate how well the posteriors reproduced the sample
distribution.

Results

We mainly present results from conditions with N =500 in
this subsection. Overall patterns for N =300 and N =1000
were similar to the patterns found in N = 500, and
results for these conditions can be found in our supple-
mentary document at https://github.com/CynthiaXinTong/
MedianGMM.git.

Table 1 summarizes convergence rates for conditions
with N = 500. In general, convergence rates were higher
for higher class separation (i.e., MD2) than for lower class
separation (i.e., MD1), and higher for balanced mixing pro-
portion conditions than the unbalanced counterpart. The
median growth mixture modeling approach (i.e., median
GMM) was very stable in terms of convergence and had

2Using informative priors for mixing proportions is known to be
helpful in recovering proper latent classes in growth mixture modeling.
For example, Depaoli (2013) found that using informative priors
allowed proper latent class recovery in growth mixture modeling
especially when mixing proportions were unbalanced. In Depaoli
et al. (2017), they conducted a sensitivity analysis on priors and
recommended incorporating prior knowledge on class size when
possible. When prior information is not available for class size, they
recommended using a noninformative prior. More discussion on priors
for mixing proportions for growth mixture modeling can be found in
Depaoli (2013) and Depaoli, Yang, and Felt (2017).

convergence rates over 99% across different latent class
separations, mixing proportions, and distributional condi-
tions. In contrast, the convergence rates for the traditional
growth mixture modeling (i.e., mean GMM) varied greatly
across conditions. The convergence rates were over 96%
when there were balanced mixing proportions or when
latent classes were highly separated. Convergence rates for
the mean GMM notably decreased under the conditions
with unbalanced mixing proportions, lower class separa-
tion, and nonnormally distributed measurement errors (i.e.,
D2-D4). When class separation is low (i.e., MD1) with
unbalanced mixing proportions and 10% outlying obser-
vations (i.e., D3), the convergence rate can be as low
as 46%.

Unbalancedmixing proportions

Figures 1 and 2 show parameter estimation results for
N = 500 with unbalanced mixing proportions. Note that
the y-axes have different scales in the plots. Figure 1
presents relative bias, MSE, and coverage rates for the
intercepts and slopes from Class 1 (upper panels in Fig. 1)
and Class 2 (lower panels in Fig. 1). Figure 2 presents
relative bias, MSE, and coverage rates for the variances
of the intercept and slope parameters in �. When data
were normally distributed (i.e., D1), both mean GMM and
median GMM performed similarly except for the variance
parameters. Both methods had low bias and MSE under
the MD2 condition, and relatively higher bias and MSE
under the MD1 condition. The median GMM tended to
have larger bias and MSE for the variance parameters
than the mean GMM. This difference was mostly due
to the discrepancy between distributions behind the data
generation (the measurement errors followed a normal
distribution) and estimating model (the measurement errors
followed a Laplace distribution for the median GMM).
Performance for the other parameters was similar. This
pattern can also be found in Geraci (2017)’s simulation
study. Coverage rates for the intercepts and slopes were
similar for both methods, ranging from 0.92 to 0.98.
Coverage rates for the variance parameters were also
similar, ranging from 0.92 to 0.99 except for the variance
of the slope under MD2 and the covariance under MD1.
The median GMM had a relatively low coverage rate for the
variance of slope (about 0.85), and the mean GMM had a
relatively low coverage rate for the covariance (about 0.81).

When data contained outliers (i.e., D2 and D3), the
magnitudes of bias and MSE for the median GMM were
considerably lower than those for the mean GMM, and
coverage rates for the median GMM were higher than
those for the mean GMM. For the mean GMM, bias and
MSE increased as the proportion of outliers increased. βI

tended to be overestimated under MD1, which indicated

https://github.com/CynthiaXinTong/MedianGMM.git
https://github.com/CynthiaXinTong/MedianGMM.git
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Table 1 Convergence rates for the median GMM and the mean GMM when N=500

Unbalanced mixing proportions Balanced mixing proportions

Median GMM Mean GMM Median GMM Mean GMM

MD1 MD2 MD1 MD2 MD1 MD2 MD1 MD2

D1 0.99 1.00 1.00 1.00 0.99 1.00 0.99 1.00

D2 0.99 1.00 0.74 0.99 0.99 1.00 0.99 0.99

D3 0.99 1.00 0.46 0.98 0.99 1.00 0.96 0.99

D4 1.00 1.00 0.84 1.00 1.00 1.00 1.00 1.00

Median GMM: Growth mixture modeling based on conditional medians; mean GMM: Traditional growth mixture modeling based on conditional
means. The total number of replications was 500

that the parameter estimate was influenced by outliers.3

The bias and MSE of βI estimate increased substantially
as the proportion of outliers increased. The relative bias
for βS did not have a discernible pattern of how the bias
was related to the proportion of outliers, although the MSE
for βS appeared to increase as the proportion of outliers
increased. Under MD2, the bias and MSE for βI and βS

were relatively small, but βI still tended to be overestimated.
The magnitudes of bias and MSE for the variance parameter
estimates also increased as outliers were included. For the
median GMM, although the bias and MSE for βI and βS

slightly increased as the proportion of outliers increased,
the magnitudes were much smaller than those for the mean
GMM. The bias and MSE for the variances of the intercept
and slope parameters increased as outliers were included,
but the MSE values were smaller than those from the mean
GMM. The coverage rates for the mean GMM dropped as
the proportion of outliers increased. The coverage rates for
the median GMM, on the contrary, did not change much
for βI and βS . The coverage rates of the slope variance and
covariance for the median GMM appeared to drop when the
proportion of outliers was 0.10.

When data were skewed (i.e., D4), the median GMM
had smaller bias and MSE and had higher coverage rates
than those for the mean GMM except for βI under MD2.
In the case of MD2, the bias and MSE of βI for the mean
GMM were smaller than those for the median GMM. This
is mainly related to the data generating procedure. When
measurement errors were generated using the lognormal
distribution, the values were rescaled to have mean 0 and
a specified standard deviation. Since the distribution was
positively skewed, the rescaled measurement errors had a
mean of 0, but the median was negative. Therefore, it is
natural for the median GMM to have underestimated βI .
Under MD1, the mean GMM overestimated βI with high
MSE values, especially for Class 1. The median GMM

3When the subscripts of latent class membership for βI and βS are
omitted, βI and βS indicate parameters for both classes.

performed better and had smaller bias and MSE for βI and
βS than the mean GMM. The mean GMM yielded smaller
bias for the variance parameter estimates, but the median
GMM had smaller MSE. The median GMM had coverage
rates higher than or similar to those for the mean GMM,
except for βI and the slope variance under MD2.

Table 2 presents bias and MSE of Class 1 mixing
proportion (i.e., π1) estimates4 and presents average class
membership recovery with its standard deviation. Mixing
proportions for both methods were well recovered in general
under MD2. In the case of MD1, mixing proportions
for the mean GMM were not well recovered when the
error distribution was not normally distributed. The median
GMM had well recovered mixing proportions regardless
of the error distribution. For the membership recovery, the
MD2 condition had better recovery than the MD1 condition.
Less than 80% of the subjects’ class memberships were
correctly estimated under MD1, and about 95% of the
subjects’ memberships were correctly estimated under
MD2. While the membership recovery for the mean GMM
appeared to be slightly influenced by the normality of the
data, the median GMM had similar membership recovery
across the four distribution conditions.

Balancedmixing proportions

When the mixing proportions were balanced, the general
result patterns for conditions with N = 500 were similar
to the ones found in the above section with the unbalanced
mixing proportions: bias and MSE values were lower for
MD2, the median GMM had smaller bias and MSE and had
more stable coverage rates than the mean GMM especially
when data contained outliers. The pattern of class member-
ship recovery was also similar across the two mixing pro-
portion conditions. The overall performance of the median
GMM was consistent across the two different mixing pro-
portion conditions. In contrast, the mean GMM tended to

4Evaluating the performance of π1 was enough because π2 = 1 − π1.
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Fig. 1 Estimation results for the intercept and slope parameters when N=500 and mixing proportions were unbalanced. RB represents relative
bias, and CR represents coverage rate

perform better with balanced mixing proportions, especially
under MD1. When data contained outliers, the mean GMM
with balanced mixing proportions had better mixing propor-
tion recovery and had lower bias and MSE values, but its
performance was still worse than the corresponding median
GMM. The results for the balanced mixing proportions can
be found in the supplemental materials at https://github.
com/CynthiaXinTong/MedianGMM.git.

Conclusions for the simulation study

In this simulation study, the performance of the proposed
conditional median-based growth mixture model and tradi-
tional mean-based growth mixture model were compared
under various data conditions. Overall, both methods per-
formed similarly when the data were normally distributed
within each class. When the data contained outliers, how-

https://github.com/CynthiaXinTong/MedianGMM.git
https://github.com/CynthiaXinTong/MedianGMM.git
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Fig. 2 Estimation results for the parameters in � when N=500 and
mixing proportions were unbalanced. RB represents relative bias, and
CR represents coverage rate. varI shows results for intercept variance

estimates, varS shows results for slope variance estimates, and covIS
shows results for intercept-slope covariance estimates

ever, the median growth mixture model outperformed the
mean growth mixture model in terms of model conver-
gence, estimation bias, MSE, and coverage rate. When
the data were skewed, the median growth mixture model

performed better than the mean growth mixture model
in general, but the median method underestimated the
mean intercept parameters due to the data generating
procedure.

Table 2 Mixing proportion and membership recovery when N=500 and unbalanced mixing proportions

Mixing proportion Membership

MD1 MD2 MD1 MD2

Median Mean Median Mean Median Mean Median Mean

GMM GMM GMM GMM GMM GMM GMM GMM

D1 0.01 0.00 0.00 0.00 0.77 0.78 0.96 0.96

(0.02) (0.02) (0.02) (0.02) (0.05) (0.03) (0.01) (0.01)

D2 0.00 –0.08 0.00 0.01 0.78 0.75 0.96 0.95

(0.02) (0.12) (0.02) (0.02) (0.03) (0.04) (0.01) (0.01)

D3 0.00 –0.11 0.00 0.01 0.78 0.74 0.95 0.94

(0.02) (0.14) (0.02) (0.02) (0.03) (0.04) (0.01) (0.01)

D4 -0.01 –0.10 0.00 0.00 0.79 0.76 0.96 0.96

(0.02) (0.13) (0.02) (0.02) (0.03) (0.05) (0.01) (0.01)

Numbers in the mixing proportion column show bias and MSE (in the parentheses) of π1. Numbers in the membership column show average
membership recovery and its standard deviation (in the parentheses)
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Empirical data analysis

In this section, we apply the proposed and traditional
methods to growth mixture modeling using a fast-casual
restaurant’s purchase data, which is currently available at
https://github.com/CynthiaXinTong/MedianGMM.git. The
restaurant has five locations in three cities on the East Coast
of the United States. Its menu consists of a wide variety of
organic options, all of which are made exclusively of plant-
based ingredients. Because the restaurant uses Square for its
point-of-sale system, we were able to use the squareupr R
package to connect to Square’s API and pull the data into R
(Mortimer, 2018).

The data offer a record of how much customers spent,
on average, when they visited the restaurant over the course
of four 3-month periods (i.e., quarters). Figure 3 plots these
four values for each of the 1241 customers in the data. The
four measurement occasions in the data have skewness of
5.36, 2.42, 2.97, and 3.20, respectively, and additional
descriptive statistics for the data can be found in our supple-
mentary document at https://github.com/CynthiaXinTong/
MedianGMM.git. As Fig. 3 displays, each measurement
occasion has outliers. For example, the maximum values for
Time 1 and Time 4 are more than ten standard deviations
away from their means. We recognize that the population
of customers is heterogeneous, but these extreme values
are notably far away from a majority of the values, which
implies that a median-based growth mixture model might be
appropriate.

In a typical growth mixture analysis, researchers need to
first determine the number of latent classes through model
comparison by using model fit statistics (e.g., Nylund,
Asparouhov, & Muthén, 2007, Peugh & Fan, 2012; 2015;
Tofighi & Enders, 2008) or likelihood-based tests (e.g.,
Nylund, Asparouhov, & Muthén, 2007, Peugh & Fan, 2012;
2015), and by considering usefulness and interpretability
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Fig. 3 A collection of individual trajectories

of latent classes (Connell & Frye, 2006; Dziak, Li, Tan,
Shiffman, & Shiyko, 2015; Lu & Song, 2012). Since
class enumeration is a complicated issue and not the
focus of this study, we will not present a thorough model
comparison procedure using model fit statistics (e.g., DIC,
Spiegelhalter, Best, Carlin, & Van Der Linde, 2002; WAIC,
Watanabe, 2010) in this empirical example especially
because these model fit statistics have not been discussed
in this article. Details about class enumeration for median-
based GMM can be found in Kim et al. (2021). For the rest
of this section, we will compare models with different latent
classes based on model interpretations. Given that Fig. 3
suggests a linear pattern of growth trajectories, we fitted
four linear growth mixture models based on conditional
medians and varied the number of latent classes from
one to four to identify an appropriate number of latent
classes. For the purpose of comparison, we also fit four
traditional growth mixture models with one to four latent
classes. The total length of Markov chains was set to
be 60,000 and the first 30,000 iterations were set to be
the burn-in period. Parameter constraints were imposed on
the mean intercept parameter to prevent within-chain label
switching. Geweke’s convergence test was used to verify the
convergence of chains.

After inspecting the estimated mean trajectories and mixing
proportions for the two methods, we found that the four-
class solution was not empirically meaningful, because some
of the mean trajectories were very close to one another.
Additionally, the one-class solution did not capture hetero-
geneous patterns in growth trajectories. Therefore, in what
follows, we present and compare the median GMM and the
traditional mean GMM with two- and three-class solutions.

Table 3 presents each method’s parameter estimates
for the two-class solution. Overall, the characteristics and
mixing proportions of the two classes are similar across
the two methods. In both cases, Class 1 has a higher
initial level βI and higher rate of change βS than Class
2, and the probability of belonging to Class 1 (0.32) is
lower than the probability of belonging to Class 2 (0.68).
Based on these results, the classes represent customers that
tend to spend more (less) at the restaurant, respectively.
Parameter estimates from the two methods differ to some
degree. The βI and βS estimates are higher for the mean
growth mixture model, indicating that outliers influenced
these estimates. For example, in the case of the βI estimates
for Class 1, the mean GMM estimated this parameter to
be 18.55, which is higher than what the Medan GMM
estimated (i.e., 17.65). Regarding the estimated variance
of the intercepts for customers in Class 1 (i.e., �(1, 1)),
both methods indicated that they vary substantially. This
result stems from the fact that some of the customers in
Class 1 have extreme values at Time 1. By contrast, the
estimated variance of the intercepts for customers in Class

https://github.com/CynthiaXinTong/MedianGMM.git
https://github.com/CynthiaXinTong/MedianGMM.git
https://github.com/CynthiaXinTong/MedianGMM.git
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Table 3 Parameter estimates for the two-class solution

Median GMM Mean GMM

Class 1 Class 2 Class 1 Class 2

βI 17.65 10.47 18.55 10.75

(16.66, 18.70) (10.27, 10.68) (17.51, 19.62) (10.53, 10.96)

βS 0.59 0.16 0.61 0.20

(0.25, 0.94) (0.09, 0.23) (0.24, 0.99) (0.12, 0.28)

�(1, 1) 41.87 3.84 51.31 4.12

(31.01, 54.42) (3.12, 4.61) (38.95, 65.56) (3.28, 5.08)

�(1, 2) –1.62 –0.01 –0.92 0.04

(-4.90, 1.11) (-0.19, 0.15) (-4.42, 2.06) (-0.21, 0.27)

�(2, 2) 0.79 0.08 0.56 0.17

(0.15, 2.12) (0.05, 0.14) (0.13, 1.72) (0.08, 0.29)

π 0.32 0.68 0.32 0.68

(0.29, 0.36) (0.64, 0.71) (0.28, 0.35) (0.65, 0.72)

The numbers in the parentheses represent 95% credible intervals

2 is much lower. The 95% credible intervals for �(1, 2)

indicate that the covariances between βI and βS for the two
methods were not significantly different from 0 for the two
latent classes, which suggests that there was no relationship
between customers’ initial average spend and the rate of
change in their average spends.

Table 4 presents each method’s parameter estimates for
the three-class solution. The purchase trajectories for the
three classes can be characterized as high, medium, and
low, respectively. Similar to the two-class solution, the βI

and βS estimates are higher for the mean GMM, especially
regarding the estimates for Class 1. The mixing proportion
estimates for Class 1, Class 2, and Class 3 were 0.12,

0.44, and 0.44, respectively, for both methods. Across the
methods, Class 1 has the highest initial level and rate
of change, but these parameters vary considerably across
subjects. Class 2 and Class 3 mainly differed in their initial
level (i.e., βI ). The 95% credible intervals for �(1, 2)

indicated that �(1, 2) are nonsignificant across the two
methods, save for the covariance between βI and βS for
Class 1 in the median GMM.

In sum, the purpose of this empirical data analysis is to
demonstrate how researchers can apply the median GMM,
and compare it to the mean GMM in practice. Since the
one-class and four-class solutions lacked interpretability, we
present the parameter estimates for the two- and three-class

Table 4 Parameter estimates for the three-class solution

Median GMM Mean GMM

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

βI 23.26 13.09 9.75 24.45 13.70 9.90

(20.87, 25.68) (12.51, 13.70) (9.53, 9.97) (22.06, 26.97) (13.20, 14.19) (9.68, 10.12)

βS 1.02 0.30 0.14 1.13 0.30 0.15

(0.24, 1.82) (0.11, 0.51) (0.08, 0.21) (0.21, 2.05) (0.11, 0.50) (0.08, 0.23)

�(1, 1) 75.64 6.68 2.81 89.10 5.23 2.78

(45.11, 114.14) (4.21, 9.59) (2.24, 3.46) (49.38, 139.25) (2.93, 7.90) (2.15, 3.49)

�(1, 2) –10.19 –0.60 –0.08 –9.54 0.08 –0.06

(-23.61, -0.26) (-1.74, 0.28) (-0.22, 0.04) (-24.62, 2.02) (-0.74, 0.66) (-0.23, 0.09)

�(2, 2) 2.14 0.72 0.08 1.88 0.37 0.11

(0.27, 6.07) (0.26, 1.36) (0.04, 0.12) (0.19, 5.83) (0.13, 0.82) (0.06,0.17)

π 0.12 0.44 0.44 0.12 0.44 0.44

(0.10, 0.15) (0.39, 0.49) (0.38, 0.49) (0.09, 0.14) (0.40, 0.49) (0.40, 0.48)

The numbers in the parentheses represent 95% credible intervals
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solutions. The empirical data used in this analysis contained
extremely high values at each measurement occasion. For
both two- and three-class solutions, the median GMM and
the mean GMM provided different parameter estimates for
the latent classes that covered the extreme values. Our
earlier simulation study suggests that the reason for the
difference is that the mean GMM is more sensitive to
outliers than the Median GMM, and it led to higher intercept
and slope estimates than those from the median GMM. This
empirical data analysis also implies that this pattern did not
disappear by increasing the number of latent classes (i.e.,
from two to three).

Discussion

This paper proposed a robust Bayesian approach to
estimating growth mixture models based on conditional
medians. The median provides a useful measure when data
are skewed or have outliers, and it has been used for
a variety of models because of its robust properties and
interpretability. In this article, we described how the median
can be used in the context of growth mixture modeling,
and evaluated the performance of the proposed model
under various conditions using a Monte Carlo simulation
study. Our simulation study showed that growth mixture
modeling based on conditional medians performs as well as
traditional growth mixture modeling based on conditional
means when data are normally distributed, and outperforms
the traditional method when data are nonnormal.

More specifically, our simulation study showed that con-
vergence rates for median and traditional growth mixture
modeling are different. The two methods had higher con-
vergence rates under the higher class separation condition.
The traditional growth mixture model appeared to have
convergence problems when the data had outliers or were
skewed, particularly under the medium class separation con-
dition. In these nonnormal cases, the convergence rates
were notably lower for the unbalanced mixing proportion
condition than those for the balanced mixing proportion
condition. On the other hand, the median growth mixture
model had convergence rates over 99%, regardless of the
type of distribution, class separation, or mixing proportion.
Stronger priors may provide better convergence rates for the
nonnormal conditions of the traditional method. In practice,
however, the implementation of strong priors is oftentimes
infeasible. The fact that median growth mixture modeling
generally had reasonable convergence rates with relatively
weak informative priors implies great potential for the pro-
posed method. When informative priors are not available,
the median-based GMM is recommended.

The performance of median-based growth mixture
modeling depended on class separation. Overall, bias

and MSE were lower for the higher separation condition
than those for the medium separation condition. Mixing
proportions were generally well recovered for both class
separation conditions regardless of the type of distributions.
In the case of the traditional growth mixture model, as
reported in Depaoli (2013), class separation influenced the
parameter estimation in our simulation study. When data
had outliers, the traditional growth mixture model recovered
mixing proportions well under the higher class separation
condition, but it failed to recover them under the medium
class separation condition.

In an empirical data analysis, deciding an appropriate
number of latent classes is one challenge in growth
mixture modeling. In our empirical data analysis, we only
considered the interpretability of the results and presented
the two- and three-class solutions for the purpose of
illustration. In practice, choosing the number of latent
classes in a Bayesian framework can be guided by using
information criteria such as DIC (Spiegelhalter, Best,
Carlin, & Van Der Linde, 2002). Several research studies on
traditional growth mixture modeling have made reference
to the possibility of over-extraction of latent classes when
data do not follow the within-class normality assumption
(e.g., Bauer & Curran, 2003; Muthén & Asparouhov,
2015). In a recent study on identifying the number of
latent classes using information criteria (Kim, Tong, & Ke,
2021), median-based growth mixture modeling was more
resistant to outliers in terms of identifying the number of
latent classes, indicating that the median-based method can
provide more parsimonious solutions and more interpretable
estimation results.

This study assumed that latent growth factors follow
a multivariate normal distribution, and the distribution of
measurement errors was manipulated to generate various
nonnormal data. In practice, there are many other factors
that can cause nonnormality. Muthén & Asparouhov
(2015) and Depaoli, Winter, Lai, and Guerra-Peña (2019)
considered various types of skewed distributions for latent
growth factors, and Tong et al. (2020) considered the
influence of data with leverage observations, which are
caused by extreme scores in random effects. It would be
worth evaluating the performance of median-based growth
mixture modeling for these various types of nonnormal
data and comparing median-based growth mixture modeling
to other robust methods such as utilizing a t-distribution
or other skewed distributions in growth mixture modeling.
In this direction, we also want to point out that outliers
can be results of unusual events such as incorrectly
recorded data or a measuring instrument failure, or unusual
but plausible observations which can control key model
properties (Montgomery, Peck, and Vining, 2006). In this
study, as shown in our data generation procedure, we
assumed that outliers were randomly generated without
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having any patterns. Namely, we did not consider the latter
cause of outliers. Note that this study also did not consider
the case in which data have missing values. This study,
however, can be adapted to include missing data as Bayesian
methods are flexible in this regard. These topics will be
further investigated in our future research.

The present paper shows that median-based growth
mixture modeling has many advantages over traditional
mean-based growth mixture modeling, especially when data
do not satisfy the within-class normality assumption. As
discussed in the literature, it is often the case that empirical
data are skewed or contaminated by outliers (Micceri,
1989). The overall findings of this paper suggest that
median-based growth mixture modeling is more resilient
to violations of the normality assumption than traditional
growth mixture modeling. The findings also suggest
that median-based growth mixture modeling has better
convergence rates than the traditional approach. Researchers
who need to fit complex models such as growth mixture
models are often challenged by nonconvergence. If results
from a traditional growth mixture model are deemed to
be influenced by outlying observations, the median-based
approach that we propose offers a likely solution because it
provides a straightforward way to achieve robustness while
lessening the chances of encountering nonconvergence
issues.

Appendix

In growth mixture modeling based on conditional medians,
the j th observation for individual i in class g can be
specified as follows

yij = λ′
jbig + ζνij + ξ

√
δνijWij , (7)

where big = βg + ui , ui ∼ N(0, �), νij ∼ exp(δ),

Wij ∼ N(0, 1), ζ = 1−2τ
τ(1−τ)

, and ξ2 = 2
τ(1−τ)

. For our
median growth mixture model, τ = 0.5, which leads to
ζ = 0, ξ2 = 8. Thus, Equation 7 can be rewritten as

yij = λ′
jbig + √

8δνijWij .

In this appendix, we assume that only mean trajectories
vary across latent classes. Full conditional distributions
for growth mixture models that allow for class-specific
covariance matrices can be easily obtained by revising the
provided equations.

It is common for mixture modeling to introduce a class
membership variable zi ∈ {1, . . . , G} with probability
P(zi = g) = πg (g = 1, . . . , G). Let yi = (yi1, . . . , yiJ )′,
y = {y1, . . . , yN }, νi = (νi1, . . . , νiJ )′, ν = {ν1, . . . , νN },
u = {u1, . . . , uN }, and z = {z1, . . . , zN }. The complete-
data likelihood of observed responses in y and unobserved
latent variables in ν, u, and z is

L(�|y, ν,u, z)

= f (y|ν,u, z,β, δ)f (ν|δ)p(z|π)f (u|�)

=
N∏

i=1

⎡
⎣ J∏

j=1

{
f (yij |νij ,ui ,βzi

, δ)f (νij |δ)
}
p(zi |π)f (ui |�)

⎤
⎦ .

We used the following conjugate prior distribu-
tions: π ∼ Dirichlet (α), βg ∼ N(β0g, �0g), � ∼
InvWishart (n0, S0), and δ ∼ InvGamma(c0, d0).

1. The full conditional distribution of π is a Dirichlet
distribution

π ∼ Dirichlet (x1 + α1, . . . , xG + αG),

where xg is the number of individuals that belong to
class g.

2. The full conditional distribution of zi (i = 1, . . . , N)
is a multinomial distribution with a probability of
belonging to class g with

P(zi = g|yi , νi , ui , βg, δ) = πg

J∏
j=1

f (yij |νij , ui , βg, δ).

3. The full conditional distribution of βg (g = 1, . . . , G)
is a normal distribution βg ∼ N(μβg , �βg ), where

μβg = �βg

⎛
⎝�−1

0g β0g +
∑
i∈Ng

J∑
j=1

1

8δνij

(
λj yij − λjλ

′
jui

)⎞⎠ ,

�βg =
⎛
⎝�−1

0g
+

∑
i∈Ng

J∑
j=1

λjλ
′
j

8δνij

⎞
⎠

−1

,

in which Ng represents a group of individuals that
belong to class g.

4. The full conditional distribution of ui (i = 1, . . . , N) is
a normal distribution ui ∼ N(μui, �ui), where

μui = �ui

⎛
⎝ J∑

j=1

λj yij − λj λ′
j βzi

8δνij

⎞
⎠ and �ui =

⎛
⎝�−1 +

J∑
j=1

λj λ
′
j

8δνij

⎞
⎠

−1

.

5. The full conditional distribution of δ is an inverse
gamma distribution δ ∼ InvGamma(cp, dp), where

cp = co + 3NJ

2
,

dp = d0 +
N∑

i=1

J∑
j=1

(
(yij − λ′

jβzi
− λ′

jui )
2

16νij

+ νij

)
.

6. The full conditional distribution of � is an inverse
Wishart distribution � ∼ InvWishart (np, Sp), where
np = n0 + N and Sp = S0 + ∑N

i=1 uiu
′
i .

7. The full conditional distribution of νij (i = 1, . . . , N ;
j = 1, . . . , J ) is a generalized inverse Gaussian
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distribution νij ∼ GIG(ρa, ρb, ρp), where ρa = 2
δ
,

ρb = (yij −λ′
j βzi

−λ′
j ui )

2

8δ
, and ρp = 1

2 .

Open Practices Statements The empirical data and programming code
are available on our GitHub site: https://github.com/CynthiaXinTong/
MedianGMM.git
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