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Abstract 

Plasticity allows organisms to form lasting adaptive changes in neural structures in response 

to interactions with the environment. It serves both species-general functions and 

individualized skill acquisition. To better understand human plasticity, we need to strengthen 

the dialogue between human research and animal models. Therefore, we propose to: (a) 

enhance the interpretability of macroscopic methods used in human research by 

complementing molecular and fine-structural measures used in animals with such 

macroscopic methods, preferably applied to the same animals, to create macroscopic 

metrics common to both examined species; (b) launch dedicated cross-species research 

programs, using either well-controlled experimental paradigms, such as motor skill 

acquisition, or more naturalistic environments, where individuals of either species are 

observed in their habitats; (c) develop conceptual and computational models linking 

molecular and fine-structural events to phenomena accessible by macroscopic methods. In 

concert, these three component strategies can foster new insights into the nature of plastic 

change. 
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In Brief 

Hille et al. wish to strengthen connections between human research and animal models of 

brain plasticity. They propose to make greater use of macroscopic imaging methods in 

animals; intensify cross-species research; develop models linking microscopic events to 

macroscopically accessible phenomena. 
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From Animal Models to Human Individuality: Integrative Approaches to the Study of 

Brain Plasticity 

Neuronal plasticity is not universally defined and used differently in different disciplines and 

contexts. Here we define plasticity as the capacity of organisms to form lasting but reversible 

structural and related functional changes of neural connections in response to interactions 

with the environment. According to an influential distinction introduced by Greenough and 

colleagues 1, plasticity comes in two ontogenetically distinct forms. One is experience-

expectant, and enables organisms to meet species-specific affordances that allow for 

behavioral development, such as imprinting e.g., 2 or basic sensory functions e.g., 3. The 

close link between maturation and plasticity is evident in this form of plasticity. The other 

form is experience-dependent, and enables individuals to respond and adapt to the specific 

and often individualized challenges of the environment throughout ontogeny, such as during 

the acquisition of a specialized skill. 

As noted elsewhere 4, the distinction between experience expectancy and experience 

dependency reflects gradual differences in the scope and developmental timing of plastic 

episodes, rather than two perfectly separable classes of phenomena. Mechanisms of 

learning play a critical role in both experience-expectant and experience-dependent 

plasticity. Furthermore, the experience-dependent ability to acquire skills that are 

idiosyncratic to the environmental niche of a given individual is itself an adaptation that has 

resulted from natural selection, and hence can be considered as a broader form of 

experience expectancy. Therefore, the mechanisms implementing either type of plasticity 

might be similar 4-6. However, the more fundamental and procedural or sensorimotor the 

acquired skill or learned behavior is, the more robust and invariant to further change it 

appears to be. The acquisition of binocular vision, for example, is clearly a process involving 

plastic changes in neuronal networks, but these tend to become very stable and are not 

easily unlearned. Plasticity in the context of declarative memory of facts and episodes might 

share mechanisms with procedural learning (and imprinting), but remains much more 

malleable. 

For research on any form of plasticity, however, we observe a substantial gap between 

animal models and research with humans 7. This gap exists for good reason: Many of the 

sophisticated experimental methods at the level of molecules, cells, and cellular 

microenvironments that are commonplace in animal studies are not applicable in research 

with humans. As a consequence, our mechanistic understanding of human brain plasticity 

often has to be inferred from animal models, and is based on assumptions that often cannot 

be validated directly. This is paradoxical insofar as much of the work on plastic change in 

animals is undertaken with the goal to better understand the mechanisms underlying 

presumably equivalent forms of brain plasticity in humans, be it in the context of normal and 

abnormal development, of skill acquisition, or of learning and memory. 
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There is a clear need to promote research designs and concepts that aim at bridging the 

experimental and conceptual gaps that exist between animal models and research with 

humans. Integrating the mechanistic understanding from animal models at the level of gene-

environment interactions, molecular processes, and fine-structural modifications with the 

wealth of sophisticated neuroimaging and psychological studies in humans would pave the 

way for more comprehensive mechanistical models of plasticity in health and disease, which 

may eventually make it possible to target plasticity in humans more effectively for preventive 

or therapeutic reasons. In a similar vein, the desire to understand how behavior-dependent 

plasticity drives and shapes individual differences in human connectomes can also inform the 

design of novel animal paradigms 8-12. 

To promote a more comprehensive mechanistic understanding of plasticity in humans and to 

strengthen an overarching lifespan perspective on the emergence of individuality, we need to 

identify existing points of contact between animal models and human research, and create 

new ones 13,14. In this Perspectives article, we present some thoughts on how progress 

towards this goal can be made. In doing so, we focus on three interrelated components. 

First, we argue that the interpretability of macroscopic methods in research with humans can 

be greatly enhanced by complementing the wealth of molecular and fine-structural measures 

used in animals with macroscopic methods, preferably applied to the same individuals 15, 

with the goal to create macroscopic metrics common to both species examined. Regarding 

macroscopic methods, we primarily refer to structural magnetic resonance imaging (sMRI), 

which includes quantitative parametric mapping 16,17 and in-vivo histology at high field 

strengths. In addition, we occasionally also refer to diffusion tensor imaging (DTI), positron 

emission tomography (PET) imaging, magnetic resonance spectroscopy (MRS), and 

electroencephalography (EEG); see also Box 1. 

Second, we need to develop coordinated research programs that capture mechanistic 

complexity across scales (e.g., from genes to behavior) and across functional domains (e.g., 

sensory, motor, cognitive, emotional, and social), again in both animals and humans. The 

development of these programs is not a one-way street but requires information flow in both 

directions. On the one hand, central questions of human plasticity, such as the emergence of 

individuality, need to guide the design of animal models 8. On the other hand, the elaborate 

research on environmental enrichments using animal models can guide the search for 

relevant environmental features in human habitats. 

Third, we need conceptual and computational models that link molecular and fine-structural 

events, such as the plasticity of synapses, dendrites, and spines 18,19, to phenomena that are 

accessible by macroscopic methods. We highlight the need to develop models and theories 

that bridge scales and domains of measurement by specifying how mechanisms identified in 
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animal models map onto macroscopic structural and correlated functional changes that can 

be measured in humans, and present one specific theory of this kind 4,6. 

In the remainder of this article, we further delineate each of these three components, and 

provide examples of existing or future research projects to illustrate their potential. In doing 

so, we focus on structural aspects of brain plasticity in humans. Functional connectivity 

changes are considered only if they are likely to represent the functional consequences of a 

hypothesized structural changecf. 20. 

Component 1: Strengthening the methods interface 

In rodents and other animals, neural plasticity can be imaged at the level of single cells in 

vivo using two-photon microscopy 19,21. Cells can be analyzed and clustered, by methods 

such as single-cell sequencing, to provide insight into subtle changes in tissue composition 

and cellular function. In humans, sMRI provides measurements at much lower resolution and 

specificity and without access to the molecular level. Despite important advances in 

neuroscientific techniques in humans, such as sMRI, fMRI, and MRS at high field strengths 

as well as PET aided by artificial intelligence (AI) (see Box 1), noninvasive structural imaging 

at the single-cell level is currently impossible and does not seem within close reach. In light 

of these massive differences in measurement, it is helpful to create overlapping data sets 

between animal models and human research in domains accessible in both examined 

species while making use of advanced cellular and molecular methods in animals, and of 

psychological studies and biophysical modeling in humans (see Figure 1 7). 

Integrating data across species, scales, domains, and time 

Morphometric measures derived from sMRI can be acquired in both humans and other 

animals, often by utilizing close to identical data-analysis processing pipelines. On the animal 

side, coarse volumetric measures can then be related to cellular measures acquired with 

invasive methods, like live cellular imaging and post-mortem quantitative histology, electron-

microscopic tissue reconstructions, transcriptomic profiling, and more. The integration of data 

across scales and domains in the same animals can provide insights about how volume 

changes map onto underlying cellular changes, which may then be extrapolated to humans, 

for whom cellular and molecular measurements are not available. 

Clearly, one-to-one correspondences between cellular changes and changes in sMRI image 

features are highly unlikely. Instead, changes in sMRI images will typically represent the net 

result of multiple physiological mechanisms. Still, obtaining measurements of plasticity-

related changes at both microscopic and macroscopic levels within the same animal can 

enhance the physiological interpretability of sMRI image changes in animals, and 

consequently also in humans, by reducing the number of candidate mechanisms that these 

changes express. 
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Grey-matter changes have been found in all kinds of physiological and pathological 

situations in humans and animals. To date, only a few studies have combined sMRI 

measures with microscopic measures in animals to relate changes in grey-matter volume to 

putative underlying cellular mechanisms, usually through post-mortem immunohistochemistry 

and biochemical or molecular measures. Findings from rodent studies on structural changes 

supposedly indicative of plasticity are mixed, suggesting several possible cellular 

mechanisms that might contribute to grey-matter volume changes observable at the 

macroscopic level. Using voxel-based morphometry (VBM) as well as histology and MRS in 

mouse brains, grey-matter volume changes in the hippocampus have been associated with 

adult hippocampal neurogenesis and changes in glutamate levels in response to wheel 

running 22-24. Also, decrements in grey-matter concentrations in the CA1 region of the 

hippocampus as assessed by sMRI have been found to correlate with reductions in the 

number of neurons in rats after cardiac arrest and subsequent cardiopulmonary resuscitation 

25. Lerch et al. (2011) have suggested that the remodeling of neuronal processes, rather than 

neurogenesis or neuron number, account for hippocampal grey-matter volume increases 

during spatial learning in mice 26. In sum, grey-matter changes have been found in all kinds 

of experimental situations in both humans 27 and rodents, involving either losses e.g., 25 or 

gains 26 in structure, function, and behavior. What needs to be further strengthened is the link 

of these findings to what is happening functionally and structurally at finer-grained levels of 

analysis. 

In regions other than the hippocampus, sMRI-based changes in grey-matter volume have 

been linked to changes in (i) dendritic volume in the anterior cingulate cortex following stress 

28; (ii) dendritic spine density, spine head diameter, and spine length in the auditory cortex 

after auditory fear conditioning 29; (iii) dendrite length, number of spines, and structural 

changes in astrocytes in visual and lateral entorhinal cortex in response to monocular 

deprivation 30; and (iv) the number and size of microglia in the striatum in a rat model of 

levodopa-induced dyskinesia 31. 

Mediavilla and colleagues (2022) investigated mice during learning of a forelimb reaching 

task with longitudinal in-vivo sMRI in addition to ex-vivo cross-sectional myelin 

immunoreactivity. They found that nonlinear decreases in grey-matter volume juxtaposed to 

nonlinear increases in white-matter volume within grey matter were associated with non-

linear changes in myelin immunoreactivity that seemed to be influenced by length density of 

myelinated axons, calculated as the length of myelinated fibers per tissue volume unit. The 

authors concluded that myelin might be a major component of structural changes observed 

at the macroscopic level by VBM during motor learning 15. 
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With ex-vivo methods such as the immunoreactivity data collected by Mediavilla and 

colleagues, physiological changes within the same individuals cannot be observed 

longitudinally. This problem can be circumvented by using repetitive two-photon in-vivo 

microscopy imaging in combination with sMRI. In principle, the joint use of the two methods 

can help to identify the underlying cellular basis of volume changes in longitudinal study 

designs, but many details remain challenging, in great part due to the limited size of the field 

of view (FOV) when using in-vivo microscopy. Still, using this strategy, Asan and colleagues 

32 suggested that local cell density, spatial arrangement of cells as well as cell-type 

composition all contribute to observable macroscopic volume changes. Although their 

approach is not free of assumptions about the reference volume (i.e., the volume of the 

entire structure of interest) and its change over time, the study is nevertheless a strong 

example of how the parallel use of a given method (i.e., sMRI) that can be applied to both 

humans and rodents in combination with one that is only applicable in animals (i.e., in-vivo 

 

Figure 1. In humans as well as in animals, longitudinal morphometric measures can be 

derived from sMRI by using highly similar data-analysis processing pipelines. In 

addition, cellular measures can be acquired on the animal side, in particular by means 

of in-vivo imaging techniques. Applying microscopic and macroscopic methods in the 

same animals can reveal the extent to which coarse volume changes can be mapped 

onto fine-grained cellular changes. The results may then be extrapolated to humans, 

where no direct microscopic measures are available. See also 7. 
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two-photon microscopy) can be used to gain insights into the dynamics of plasticity across 

scales. 

Beyond work with rodents, animal studies addressing the relationship between macroscopic 

and microscopic brain measures in the course of plastic change are sparse. In monkeys it is 

possible to administer very similar cognitive tests as in humans; in addition, the brains of 

humans are anatomically more similar to monkeys’ than to rodents.’ Several studies have 

shown that combining in-vivo MRI and microscopy is technically possible in macaques 33,34 

and in marmosets 35-37. However, so far, no study has used a multimodal approach to 

investigate structural plasticity at different spatial scales in these or other primate species. 

Challenges in linking animal models to human research 

Attempts to bridge the gap between research on plasticity in animals and humans face 

various difficulties. One pivotal problem is to define a common brain space mapping 

homologous brain areas between different species and to develop applicable ontologies 

across the many aspects of the relevant research. Automated procedures are available, such 

as those using a parcellation-based approach based on anatomical features 38. Alternatively, 

one may resort to higher levels of abstraction, such as brain regions defined on the basis of 

equivalent functional brain activity profiles 39. Generally, the organization of the mammalian 

brain is sufficiently well conserved to make use of the general cellular architecture for 

matching homologous cell types. Note, however, that Hodge et al. (2019) have observed 

species- and region-specific differences in cell types that are likely to affect microcircuit 

function. Therefore, the extent to which the features under study are similar across species 

needs to be critically examined in each individual case 40. 

In addition to delineating homologous anatomical and molecular features across species, it is 

equally important to align data from humans and other species along an ontogenetic axis 

defined by the pacing of maturational and senescent brain changes 41-43. In most studies with 

mice, animals older than 60 days are referred to as ‘adults.’ In the literature, researchers 

most often investigate mice between 6 and 20 weeks. Responses to a questionnaire suggest 

that researchers often choose this age period for practical reasons 44. While brain volume 

seems to stabilize in mice at three weeks, cortical thickness and myelination are still 

undergoing age-related maturational changes until three months of age 45 and concomitant 

microstructural changes take place until at least four months of age 46. 

Furthermore, ontogenetic changes in the degree, operation, and path dependency of plastic 

mechanisms need to be taken into account. For instance, experience-dependent plasticity 

during skill acquisition in adulthood may build on experience-expectant plasticity during 

critical periods. In more general terms, the results of earlier periods of plasticity are likely to 

influence the onset and outcome of later plastic episodes 47-49. At the level of 

neurotransmitters, and throughout ontogeny, cortical plasticity is regulated by changes in the 
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balance between excitation and inhibition 50. The regulation of inhibition itself depends upon 

maturation, and changes during the transition from early life to adulthood 50,51. 

Another prerequisite for comparing plastic brain changes across species is to assemble and 

coordinate analysis pipelines that are suitable for brains that differ greatly in size and 

complexity. Usually, in humans, the analysis of volume changes requires segmenting the 

brain into different tissue classes using established toolboxes 52,53. Segmentation of animal 

brains is sometimes more difficult, reflecting differences in image contrasts and less clearly 

defined brain structures. Furthermore, analysis procedures are usually less standardized in 

animal models than in humans. To establish common ground across species and warrant 

between-species comparisons, progress needs to be made in establishing processing 

pipelines applicable to both human and non-human brains. One option in need of further 

validation is the use of deformation-based morphometry in combination with multi-atlas 

segmentation approaches 38,54. This approach bears the potential to map neuroanatomical 

regions based on cytoarchitectonic and MRI-derived human atlases onto cytoarchitectonic 

mouse atlases to identify brain regions that are homologous across the two species. 

A potential difference between animal and human studies is the degree of stress that the 

study procedure elicits. In longitudinal animal studies, multiple in-vivo imaging sessions might 

lead to stress during handling and experimental preparation 55. In particular, oxidative stress 

due to multiple anesthesia exposures might compromise the validity of both neural and 

behavioral data 56,57. It is therefore recommended to run parallel sets of animals as control 

groups to gauge the effects of repeated anesthesia exposure. 

Another difference in methodology between species concerns spatial scope and resolution. 

Microscopic imaging methods are spatially limited. While anatomical MR images are usually 

analyzed on a whole-brain level, in-vivo imaging methods at the subcellular level are 

constrained to a very small FOV. For example, two-photon microscopy in mice typically 

allows for a FOV with a surface size below 1 mm2 58. When combining measures at different 

spatial scales, it is important to find a suitable registration method to ensure correct mapping 

between the different imaging modalities. One example is to use blood vessel branching 

points as landmarks in two-photon microscopy stacks and sMRI volumes, given that they are 

visible in both imaging modalities 32. Advances in neuroimaging methods that allow for a 

larger FOV while maintaining synaptic resolution will help to identify corresponding 

mechanisms of plasticity at different spatial levels 59-61. 

Limits to causality attribution 

Even if measures from microscopic and macroscopic levels of analysis have been obtained 

repeatedly from the same animals in the course of skill acquisition, and methodological 

precautions have been taken, it still remains challenging to draw causal inferences that link 

behaviorally relevant mechanisms to changes discernible by macroscopic methods. Let us 
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assume that there are sets of (i) microscopic variables, X1…n, (ii) macroscopic variables, Y1…n, 

and (iii) behavioral variables, Z1…n, and that all three sets have been observed repeatedly 

over time. The time-ordered nature of these sets allows researchers to analyze lead-lag 

relations among them 62-65. Based on such analyses, it may turn out that changes in a subset 

of set X variables precede and predict changes in a (presumably smaller) subset of Y 

variables, which in turn are linked to changes in a subset of Z variables. Such results are 

informative, as they point researchers to those subsets in X, Y, and Z that show correlated 

patterns of change. However, delineating such lead-lag relations does not imply causality. 

For instance, changes in Y may be influenced by several changes in X, some of which are 

causal for changes in Z, while others are not. To move closer towards inferring causality, we 

need to introduce experimental manipulations that affect mechanisms captured by the X set 

of variables, and observe downstream effects on sets Y and Z. In addition, we need to make 

sure that interpretations of data at the macroscopic level are consistent with what is known 

about the underlying physiology assessed at the microscopic level 66. 

Component 2: Designing analogous experimental paradigms and environments for 

animals and humans 

Linking research with animal models to human research requires an explicit effort to develop 

analogous experimental paradigms and comparable behavioral tasks that can be used to 

elicit structural brain plasticity on either side. This implies two important but not fully 

compatible requirements. On the one hand, one would like the target behavior to be 

sufficiently similar across species to enable valid comparisons; on the other, the task that is 

used to elicit these behaviors should be ethologically and ecologically meaningful in both 

species. Given that species have adapted to different environments, neither of these two 

requirements can be met in full. In our view, there are at least two productive ways of dealing 

with this problem. First, we can devise human analogues of well-researched animal models 

to implement the kind of microscopic-macroscopic method overlap described in the previous 

section. This strategy probably works best when studying the experience-dependent 

acquisition of specific skills that are arguably relatively similar and meaningful in both 

examined species. Examples are grasping food items, encoding episodic memories, 

navigating new spaces, and various forms of perceptual learning. 

Second, we can move to a different level of abstraction and devise animal models that help 

to uncover mechanisms of brain plasticity that act as motors of individuality across different 

species, often reflecting a natural mix of experience-expectant and experience-dependent 

plasticity. This strategy entails members of the model species being followed longitudinally in 

their natural habitats to observe the way in which plasticity contributes to their individual 

development. 
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Whereas the first strategy aims to bring human research closer to animal models, the second 

tries to bring animal models closer to the richness of human experience. Importantly, the 

latter strategy can also feed back onto human research, as it forces researchers to think 

about the dimensions that shape and enrich human ecologies. Each of these two strategies 

comes with different strengths and weaknesses; whereas the former reduces the richness of 

behaviors to definable tasks, the latter attempts to deconstruct the complexity of behavior 

post-hoc. In the following, we illustrate both strategies with research from our own on-going 

work. 

Finding common ground across species: Studying skill acquisition in mice and humans 

The acquisition of new skills is likely to induce brain plasticity in primary brain areas such as 

the motor, auditory, or visual cortices, depending on the nature of the skill in question. For 

example, both rodents and humans are capable of acquiring motor skills in the form of 

complex grasping movements. Skilled reaching is comparable across humans and rodents, 

as the succession of hand shaping movements are homologous in the sense that they follow 

similar temporal and spatial patterns 67.  

We are currently conducting a collaborative study in which both mice and humans learn a 

fine motor skill. Over several days mice are trained in the single-pellet reaching task 68, in 

which they learn to grasp a small food item through a narrow slit in an acrylic glass wall, 

using their preferred paw. In the corresponding human task, the participants undergo a daily 

training regime with an adapted reaching task using chopsticks (see Figure 2). Thus, both 

mice and humans learn to reach through a narrow slit and grasp a little food object that is 

then transported over a short distance. Our expectation is that the use of such corresponding 

motor tasks will result in analogous learning curves and will induce similar mechanisms 

promoting plasticity in the motor cortices of either species. 

A limitation of the motor task is that humans are required to use a tool instead of learning to 

grasp solely with their hands, given their pre-existing natural proficiency in single-hand 

grasping. However, finding a task for humans that simulates the animal movement of 

acquiring a new kind of grasping without the addition of a tool proved to be challenging. In 

this context, it is worth noting that there is evidence in humans suggesting that the neural 

responses for graspable food items show some similarities to the responses for tool stimuli 

69. Another distinction between the animal and human tasks is that the mice are food-

restricted and, after successfully grasping the food pellet, consume it immediately as a 

reward. In contrast, humans place the food item into a bowl and receive a secondary reward 

(i.e., a monetary reimbursement for participation), but are allowed to eat the transported 

sweets after successful completion of the whole task. 

Both humans and mice undergo multiple sMRI measurements to acquire macroscopic 

anatomical measures (e.g., grey-matter volume estimates) at different timepoints during the 
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time course of training. In mice, different cellular measures such as the number and 

morphology of dendritic spines, number and morphology of astrocytes, length of myelin 

sheaths, and diameter and density of blood vessels are recorded and quantified. In addition, 

the motor cortices of the mice are examined histologically post mortem. Assessing plasticity-

related changes at macroscopic and microscopic levels in the same animals will allow us to 

directly relate these measures and their variation over time to each other. Using this 

approach, we can study brain changes over time to determine which plasticity-related 

microscopic changes are contributing to the macroscopic changes in mice, which in turn will 

help us to better understand the physiology underlying macroscopic brain changes in 

humans. To support the interpretation of possible structural brain changes at the 

macroscopic level in humans, qMRI as well as functional MRI (fMRI) are administered. 

 

Figure 2. Coordinated skill acquisition studies across species. Mice and humans train a fine 

motor skill over several days. In mice, the well-established single-pellet reaching task is used 
68. Humans are asked to grasp irregularly shaped food items (M&Ms) using chopsticks. 

Learning curves are similar across species (preliminary study data, Dissertation MH). 

Animal models of lifespan choice architectures and emergent individuality 

In animal models of brain plasticity, environmental enrichment is often used to trigger and 

investigate plastic change 70-72. In the Individuality Paradigm of the enrichment model, a large 

number of animals is housed in an extensive stimulating enclosure to study how brain 

plasticity supports the development of individuality 8. Each mouse is uniquely identified by 

means of an implanted radio frequency identification (RFID) chip that is registered by RFID 

ring antennas. In this manner, researchers can track the emergence of individual differences 

in behavior in a shared environment. 

Applying the Individuality Paradigm, Kempermann and colleagues found that genetically 

identical mice exposed to an enriched environment display different developmental 
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trajectories, with those showing more exploration behavior also showing more neurogenesis 

in the dentate gyrus of the hippocampus 8,10. This finding corroborates the longstanding claim 

that behavior itself acts as a third source of individual differences in development beyond 

genes and environment 73. The investigation of emerging individual differences in genetically 

identical mice has its human analogue in the developmental study of monozygotic twins. 

Both in humans and animals, observations over prolonged periods of time are needed to 

evaluate the influences of different environmental experiences on plasticity while controlling 

for genetic variation 74-77. 

Newer cage systems implementing the Individuality Paradigm consist of up to seventy 

connected standard cages 9; see Figure 3). Given their modular architecture, these systems 

are ideally suited to investigate differential effects on brain plasticity as a function of 

enrichment exposure at different ages and over different durations. 

Figure 3. Display of the cage design used in the Individuality Paradigm 9. Multiple standard 

cages are connected to each other with connector tubes that are equipped with RFID 

antennas to track mouse movements. The standard cages can be equipped with a large 

variety of environmental affordances and opportunities. Given that the mice are individually 
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tracked, experiences can be experimentally manipulated at the individual level in the course 

of development.  

Environmental sources of inequality, such as differential access to learning opportunities, can 

be systematically introduced into the Individuality Paradigm at various points during ontogeny 

to study their immediate and lasting effects on individual differences in brain and behavior. 

Borrowing from concepts pioneered in behavioral economics 78, researchers can use the 

Individuality Paradigm to systematically vary choice architectures at the level of the 

individual. The IntelliCage, a fully automated system to assess mice behaviorally 79, can be 

used to this end. For instance, the IntelliCage can communicate with the implanted RFID 

chips to individually control access to learning corners that offer a range of learning tasks, 

such as serial reversal place learning or side learning. 

How do efforts to explore environmental effects on development in rodent populations relate 

to longitudinal research in humans? 

Human longitudinal studies of adult development have tended to neglect the effects of early 

environmental exposure on the developing brain 80. However, an increasing number of 

studies have examined the effects of intra-uterine influences e.g., 81,82,83, childhood 

environment 84,85, current habitat 86,87, and acute as well as chronic exposure to specific 

aspects of the environment on the brain 85,88,89. One strategy has been to conduct high-

density sampling of neuroimaging data within individual participants. Two examples are the 

MyConnectome project 90 and the day2day study 90-93. Such studies allow researchers to link 

variations in lifestyle to variations in brain parameters over time. Another strategy has been 

to combine ecological momentary assessment (EMA) including GPS tracking with a one-time 

assessment of brain characteristics to link real-life behavior to presumably stable neural 

correlates 94,95. Both strategies can profit considerably from the use of wearables and 

machine learning techniques in the acquisition and analysis of day-to-day behavior 96. 

Human studies of this sort can be aligned with animal models that vary factors present in 

both animal and human ecologies with greater experimental control to attain more precise 

insights into the age-graded effects of various environmental exposures on behavior and 

subsequent development. This strand of research also directs conceptual attention to the 

question of what it is exactly that constitutes an enriched environment in different species 

14,97, including humans 98, and to what extent active engagement with this environment is 

necessary, or passive exposure sufficient, to shape brains across ontogeny 99. 

Comparing humans to animals in low-constraint settings 

Recent years have seen an upsurge in the investigation of freely behaving animals, including 

the search for tasks and stimuli that are based on their natural living environments. Such 

attempts at ecological validity and equivalence move research with animals closer towards 

human research that seeks to relate individual differences in lifestyles to individual 
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differences in brain, behavior, and health 90-92. Larger and more natural housing conditions 

for animals are required for such experiments. For instance, mice can be housed and studied 

in large outdoor vivariums that afford more complex and naturalistic lifestyles 100. Such semi-

natural outdoor enclosures maximize ecological realism by providing many social partners, 

high physical complexity, and a semi-natural ecosystem. At the same time, relatively high 

levels of experimental control can be maintained 101. More naturalistic environments have 

proven to be suitable for laboratory mice, and to increase animal welfare 102,103. 

Environmental heterogenization instead of standardization also promises to overcome 

conflicting test outcomes, improve external validity, and increase reproducibility 104. 

 

Figure 4. Quantifying spatial coverage across species using the measure of roaming entropy. 

Roaming entropy is at a minimum when an individual remains at the same place during a 

given time period, and large when an individual spends equal amounts of time at many 

different places; for details, see Freund et al., 2013.. In mice (Freund et al., 2013), individual 

differences in cumulative roaming entropy, indicating the active coverage of territory, have 

been found to correlate positively with individual differences in adult hippocampal 

neurogenesis. Panels (a) and (b) show an animal with low versus high roaming entropy, 

respectively. In humans (Heller et al., 2020), greater roaming entropy on a given day has 

been found to be associated with more positive affect on that same day within individuals; 

this effect was stronger for individuals who exhibited greater functional coupling between 

hippocampus and striatum. Panels (c) and (d) show a research participant living in New York 

City on a day with low versus high roaming entropy, respectively. 
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More natural housing conditions set the stage to investigate the behavioral repertoire of a 

given species differently than when held in the laboratory. For example, re-wilded mice 

probably show different behaviors like foraging or digging and experience stress differently 

than laboratory mice. We might imagine studying mice in their more natural environments in 

ways that are similar to EMA in humans 105, and vice versa. For instance, a study on real-

world experiential diversity among young adults 94 used “roaming entropy” as a measure of 

spatial exploration. This measure has originally been developed to track the emergence of 

individual differences in spatial exploration among rodents living in enriched environments 8; 

see Figure 4. In coordinated across-species investigations, one would be able to 

experimentally introduce species-adequate stressors and observe individuals’ responses to 

them. Such investigations can be augmented by longitudinal brain imaging and non-invasive 

or mildly invasive deep phenotyping to assess the dynamic development of plastic changes 

in brain structure, brain function, and behavior.  

Component 3: Towards theories and models of plastic change that integrate scales of 

measurement 

To facilitate theory building and generalization, the interchange between animal models and 

human research needs to be informed by theories and models that explicitly seek to bridge 

the gap between microscopic and macroscopic observations 4. These models and theories 

need to be embedded into conceptual frameworks that delineate the ontogenetic role and 

environmental contexts of plastic change 4,5,47,48,106-108. Specifically, there is a need to build 

models that map what is observable in humans onto what can be studied in animals and vice 

versa. This requires conceptual integration across scales of measurement, space, and time. 

For instance, models of this type would specify the ways in which nonlinear gross volume 

changes observed with sMRI reflect changes in dendritic sprouting 109, myelination, or a 

number of other parameters that might result in volume changes. 

Such integrative bridge models are characterized by two key features. First, they need to 

model the dynamics of plastic change at the microscopic level. For example, extant models 

of plastic change posit that new dendritic spines form clusters during learning 110. 

Experimental studies have corroborated that dendritic spine clustering can indeed be 

observed in animals, for example in response to motor learning 111. Some computational 

models have implemented clustered structural plasticity and explored ensuing network 

dynamics 112,113. As an example, in a biophysically inspired model, Frank et al. (2018) found 

that dendritic spine turnover before a learning phase was a driving mechanism for the 

clustering of spines in response to learning. This work also includes the identification of 

molecular and cellular mechanisms that enable the storage and reactivation of learned 

information in the brain. Recent advances in the development of engram labeling 

methodologies have proven particularly useful in this regard 114. 
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Second, bridge models need to specify how microscopic changes, such as the ones posited 

by 113, map onto macroscopic observations. The empirical basis for such mapping functions 

needs to be established by the kind of empirical work described above. To the extent that we 

can establish empirical connections between microscopic and macroscopic levels of 

measurement, we can predict and interpret macroscopic changes observable in humans on 

the basis of microscopic observations made in animal studies. 

Motor skill acquisition in rodents and humans as a testbed for theory development 

One initial step towards linking microscopic and macroscopic levels is the expansion–

exploration–selection–refinement (EESR) theory of brain plasticity 4,6. The theory has been 

developed to capture plastic changes during skill acquisition, with an emphasis on motor 

skills. In the following, we review some of the empirical evidence that has informed the 

formulation of the theory, and present its core predictions; for details, see 4,6. 

Studies of rodents have shown that cortical representations of limbs and movements initially 

expand 115,116 and then renormalize during learning 117. Importantly, these studies have found 

that trial-to trial variability of local brain activity patterns is larger earlier than it is later in 

learning. According to EESR theory, this finding suggests that a variety of different circuits of 

excitatory neurons within the motor cortex is tried out early in learning, whereas performance 

later in learning reflects the stabilized use of a specific neural circuit devoted to the task 118. 

The early trial-to-trial variability of activity patterns has been proposed to signify exploration 

of possible network states 119,120, in the sense that initial variability may provide a pool of 

circuits from which the optimal one can be selected through system-level feedback 

mechanisms, such as striatum-mediated reinforcement learning or cerebellum-based 

sensory prediction errors 120-123. 

Changes in brain activity related to skill learning eventually trigger changes in structure. For 

example, synaptic density in the rodent motor cortex initially increases and then decreases 

during learning 111. Novel synapses rapidly form in the motor cortex of rodents during motor 

learning 111,124,125. With continued training, the growth of dendritic spines (a proxy for 

synapses) is followed by stabilization of the new spines and removal of old spines, and 

overall spine density almost reverts to pre-training levels 21,68,126. This kind of synaptic 

remodeling occurs both in deep 68 and superficial 118 layers of the motor cortex. The 

probabilities of deletion of old synapses and formation of new ones are typically thought of as 

locally governed by the rules of Hebbian and homeostatic plasticity 121. 

Interestingly, recent studies of learning-related changes in human brain structure also show 

increase followed by renormalization. Using sMRI, several researchers have observed 

experience-dependent increases and decreases in regional estimates of human brain 

volume and cortical thickness in adulthood 27,127-130. For instance, Wenger and colleagues 128 

acquired 18 T1-weighted structural MR images over a seven-week period, for each of 15 
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right-handed adult participants who practiced left-handed writing and drawing during that 

time. After four weeks, increases in grey-matter probabilities were observed in both left and 

right primary motor cortices relative to a control group; however, three weeks later, these 

differences were no longer reliable. Time-series analyses showed that estimates in grey-

matter probabilities in primary motor cortices increased during the first four weeks of learning 

to write and draw with the left hand, and then partially renormalized during continued 

practice. 

The expansion–exploration–selection–refinement theory of plastic change 

Based on this evidence, Lövdén and Lindenberger have proposed the EESR theory of plastic 

change during skill acquisition 4,6; for related considerations, see 121,123,131-133. Figure 5 

presents a summary description of EESR theory. Driven by a large mismatch between the 

expected goal behavior and its actual execution, a task-relevant cortical area expands, and is 

subsequently explored for neural circuits that can approximate the goal behavior. During this 

exploration, different actions are probed and different behavioral patterns to achieve the 

same goal are tested. Trial-to-trial behavioral variability and variability of neural activity 

patterns are therefore large. This broad activity in turn induces structural brain changes, such 

as formation of synapses. Which signals exactly trigger dendritic spine formation is not yet 

clear. In addition to dopaminergic modulatory signaling mediating the reinforcement of 

actions, γ-aminobutyric acid (GABA) signaling is likely to play an important role in the initial 

stages of neuroplastic transformation, as evidenced by observed reductions in GABA 

concentration within primary sensorimotor cortex in motor sequence learning tasks 134. The 

shift in excitatory-inhibitory (E/I) balance towards excitation may trigger a plastic state that 

favors initial expansion and subsequent exploration, and is reminiscent of the regulation of 

critical periods by maturing GABAergic parvalbumin-positive inhibitory neurons in early 

childhood 107,135,136. 

Through a process of reinforcement learning that is partly mediated by the neurotransmitter 

dopamine, the best-performing microcircuit is selected, and neural and behavioral variability 

starts to decrease. In other words, another class of signals is needed to trigger the end of 

exploration and the subsequent stabilization of representations during the refinement of skill 

acquisition. In ontogeny, the formation of perineuronal nets is critical for closing critical 

periods 107,136. Perineuronal nets may also help to stabilize the neural substrate of skilled 

performance, with the ensuing retraction of structure and decreases in neural activity. After 

circuit selection, neural activity as well as neural and behavioral variability decreases. 

Synaptic remodeling in the selected neural circuit continues to occur in a subsequent 

repetition-based refinement of task execution, but novel and pre-existing structure in 

unselected circuits retracts. 
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Lindenberger and Lövdén 4,6 hypothesize that the EESR sequence is reflected at the 

macroscopic level by several indicators. First, task-related activation as measured by fMRI 

BOLD signal in task-relevant regions is assumed to be high during early phases of skill 

acquisition, as different and presumably inefficient task representations are being probed, 

and to decrease with increasing task proficiency, resulting in a monotonically decreasing 

function. Second, they hypothesize that three macroscopic indicators follow an inverted U-

shape function: (i) E/I balance, as measured by MRS, tracking the opening and closing of the 

plastic episode; (ii) synaptic density, as measured by PET, tracking synapse formation and 

elimination; and (iii) regional brain volume as measured by sMRI (e.g., VBM), tracking the 

tissue expansion and renormalization. Third, as the skill approaches asymptotic levels and 

competing neural ensembles have been eliminated, they expect that the neural ensemble 

executing the task stabilizes, indicating the selection and refinement of the underlying 

engram 137. Therefore, the self-similarity of task representations as measured by fMRI-based 

or EEG-based representational similarity analysis (RSA) is expected to increase in the 

course of skill acquisition; see also 138. 

Clearly, the microscopic-macroscopic mapping functions hypothesized by EESR theory need 

to be corroborated by empirical evidence. In some cases, such mappings might not be 

straightforward, or even possible; for instance, overall changes in regional brain volume may 

represent the net outcome of many different microscopic processes that cannot be separated 

in the aggregate. At the same time, better specificity and resolution of MRI methods, 

including MRS, and improvements in PET imaging may soon facilitate the physiological 

interpretation of macroscopic measures, and inform attempts to build models and theories 

that connect microscopic and macroscopic levels of analysis. 
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Figure 5. The expansion–exploration–selection–refinement (EESR) theory of local plastic 

change. According to the theory, local plastic change proceeds in three phases that together 

form a learning cycle. During the initial stages of expansion and exploration, when the brain 

probes available or generates new microcircuits that can execute the task, there is 

substantial trial-to-trial variability in (a) behavior and (b) patterns of neural activity. This broad 

and heightened level of activity induces structural change, such as the formation of new 

dendritic spines as well as other structural characteristics of the neuron, exemplified by 

myelination (c). Eventually, the best-performing microcircuit is selected, and neural and 

behavioral variability starts to decrease (a, b). In a subsequent refinement stage, processing 

in the selected microcircuit stabilizes through further structural refinement while novel 

structures of unselected microcircuits continue to retract (c). At the macroscopic scale, EESR 

theory predicts: (i) a decrease in in functional activation as measured by fMRI BOLD; (ii) 

sequentially ordered inverted U-shape functions for E/I balance measured by MRS, synaptic 

density measured by PET, and brain volume measured by sMRI; (iii) a late-evolving 

monotonic increase in the self-similarity of neural activation patterns corresponding to a 

specific behavior or percept as measured by fMRI-based or EEG-based representational 

similarity analysis (d). Modified after 4. 

Outlook 

To better understand plasticity in humans, its study must be coordinated and integrated 

across species and scales of measurement. In this article, we have showcased several 

opportunities for improved coordination and integration. We acknowledge that many more 

opportunities exist, and that our exposition was exemplary rather than exhaustive. To explore 
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and exploit all of these opportunities, we need to intensify the dialogue between researchers 

who study plasticity in animals and researchers who investigate plasticity in humans, and to 

substantiate the results of this dialogue by developing models and theories that connect 

microscopic and macroscopic scales of measurement. Engagement in this dialogue will 

transform experimental paradigms and research questions on either side, and yield new 

insights into the nature of plastic change. A good example for such collaboration concerns 

the phenomenon of “infantile amnesia,” where attempts are underway to link human 

longitudinal data to animal experimentation 139-141. 

This dialogue is not without challenges, both institutionally and for individual researchers. For 

instance, researchers with an interest in human skill acquisition are called upon to enhance 

the mechanistic interpretability of their imaging and behavioral data by aligning their 

experimental paradigms more closely to existing animal paradigms, which raises the issue of 

ethological validity. Researchers who study the epigenetic emergence of individual 

differences in animals are invited to ask themselves how their research can help to 

understand the developmental origins of individuality in humans, including notions of agency 

and free will 8,73,142. Researchers studying the human lifespan are asked to come up with 

paradigms that simulate their research questions, such as unequal access to learning 

opportunities, in animal populations.  

Organizationally, research on plasticity in animals and humans is often performed at different 

institutes, departments, and laboratories. Also, with some notable exceptions, funding 

schemes are typically geared towards one or the other branch of research, but rarely at their 

integration. We hope that this article helps to encourage institutions and funders to place 

greater emphasis on the coordination and integration of research on plasticity in animals and 

humans. 
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Box 1: Advances in Imaging Methods 

Studies with rodents suggest that multiple cellular mechanisms contribute to plasticity-related 

grey-matter volume changes. The underlying mechanisms that contribute to such changes 

are likely to differ across brain regions, task domains, and stages of plastic change. To 

enhance the physiological interpretability of measures amenable to human research, it is 

imperative to assess the full scope of biological mechanisms at the cellular and molecular 

level in addition to structural changes at the macroscopic level in animals to obtain a 

comprehensive picture of their associations. 

Quantitative MRI (qMRI). In combination with biophysical modeling, advanced neuroimaging 

methods can improve the interpretability of morphometric results by approximating 

microstructural tissue properties of the brain from MRI parameters in both humans and other 

animals 16,17. qMRI assesses physical quantities such as relaxation time or magnetization 

transfer in a voxel-wise manner. By applying biophysical modeling to a variety of qMRI 

parameters using multi-parameter mapping 143, the resulting data can be converted into 

physiologically interpretable metrics, such as iron content or axonal diameters. For example, 

Azzarito et al. (2023) used qMRI to investigate microstructural changes in the grey and white 

matter of healthy young adults undergoing four weeks of complex motor task training. Among 

other parameters, they assessed the longitudinal relaxation rate (R1 = 1/T1) and 

magnetization transfer saturation (MTsat). Given that higher myelin content shortens the T1 

relaxation time, R1 served as a marker for myelin concentration, whereas MTsat is assumed 

to indicate myelin density by measuring magnetization exchange between myelin 

macromolecules and water. During training, markers followed a non-monotonic temporal 

pattern in the left posterior cerebellum, initially decreasing and then renormalizing by the end 

of the learning period. According to the authors, the observed changes may be related to 

myelin remodeling, alterations in local tissue composition, or both. Analogous qMRI 

measurements in animal models combined with microscopic methods are likely to reduce 

these interpretational ambiguities 144. 

In-vivo MRI histology. High-field strength MRI approaches (e.g., 7 Tesla and higher), which 

seek to resolve the laminar structure of the cortical sheath 145, are equally promising. Such 

methods may permit the observation of layer-specific plastic changes in response to learning 

146. Currently the focus of available biophysical models is on white-matter microstructural 

features, such as MR g-ratio associated with axonal conduction velocity 147. Advances in 

biophysical modeling are needed to derive estimates of grey-matter properties 148 such as 

neuronal density 149, dendritic density 150, and soma density 151,152. 

Positron emission tomography (PET). The design of new radioligands and advances in 

image reconstruction based on artificial intelligence (AI) open up new opportunities for the 

use of PET in research on plasticity 153. For instance, with the help of radioligands binding to 
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the synaptic vesicle protein 2A (SV2A), PET can yield in-vivo estimates of synaptic density in 

humans 154-156, including changes in synaptic density in the course of skill acquisition. 

Specifically, setting up an intervention study in which participants acquire a new skill and are 

assessed with PET together with MRI across several occasions would make it possible to 

examine whether regional synaptic density changes correlate with grey-matter volume 

changes (Martin Lövdén, personal communication). PET allows for in-vivo molecular and 

metabolic imaging but requires radioactive isotopes. Therefore, PET measurements have 

typically been restricted to the assessment of a single radioligand in humans. Recent 

methodological work suggests that radiation dosage can be drastically reduced using AI-

assisted image reconstruction 157. This may enable several PET markers to be administered 

to the same individual in close succession, resulting in a multidimensional and dynamic 

picture of plasticity-related metabolic and neurochemical changes in the human brain. 

Magnetic resonance spectroscopy (MRS). Using MRS, changes in excitatory-inhibitory (E/I) 

balance can be assessed non-invasively as the ratio of glutamate (Glu) to 𝛾-aminobutyric 

acid (GABA). E/I balance is thought to regulate the induction and expression of long-term 

potentiation (LTP) and long-term depression (LTD), two forms of synaptic plasticity that 

enhance or weaken synaptic transmission. Hence, E/I balance plays an important role in 

modulating synaptic plasticity 158. More widely available 7-Tesla MRI systems greatly 

facilitate the simultaneous quantification of GABA and Glu 159. 

Imaging of genetically modified animal models. In addition to correlating cellular changes 

with grey-matter volume changes, a complementary strategy consists in identifying relevant 

mechanisms using genetically modified animal models in combination with multi-modal 

neuroimaging techniques. For instance, one possible approach to find out whether increased 

synapse formation is an underlying biological mechanism of motor cortex grey-matter volume 

increases in response to motor learning is to block the formation of new synapses in a knock-

out mouse model by inactivating genes known to be involved in synapse formation 160. 

Synapse formation can be measured via two-photon microscopy during training of a task, 

while sMRI would be used to find out whether a reduction in learning-induced synapse 

formation reduces or eliminates learning-induced volume increases in task-specific brain 

regions. In addition to investigating dendritic spine formation, knock-out mice models can be 

used to examine spine stability 161 or the clustering of dendritic spines 162 during learning. 

Human genome-wide association studies (GWAS). In combination with transcriptomic 

profiles, GWAS can help to identify which cell types are associated with macroscopic 

structural brain changes 163,164 and cognitive phenotypes. For example, Lam and colleagues 

165 studied the genetic basis of individual differences in cognitive performance and found that 

neurons and their synaptic mechanisms, rather than oligodendrocytes and astrocytes, were 

the main carriers of gene-related variation in cognition. Individual differences in cognitive 

performance tend to be correlated with macroscopic aspects of brain structure such as 
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regional grey-matter volume or thickness 166. Exact definitions of brain regions and cell types 

are notoriously difficult. To bridge the gap between genes and brain structure, transcriptomic 

profiles can help to reveal in which brain regions and cell type genes are potentially 

expressed 163. New insights into single-cell transcriptomics have profoundly influenced and 

advanced the definition of cell types and their functional states 167,168. At the molecular level, 

plasticity is characterized by epigenetic changes that represent such altered states and are 

considered the molecular equivalents of plasticity and its consequences at the level of cells. 

  



 25 

Box 2: Challenges in Developing Analogous Paradigms Across Humans and Animals 

Attempts to overcome the gap between animal and human research on plasticity by 

developing analogous paradigms for animals and humans face several challenges that can 

curtail their validity. These challenges differ between skill-acquisition studies in rather well-

controlled experimental settings, on the one hand, and enrichment paradigms, on the other. 

In relation to skill-acquisition studies, we note the following concerns with respect to their 

validity: 

(1) Comparable pair of tasks. A major challenge in skill-acquisition studies with animals 

and humans is to decide on the appropriate analogy between the tasks. While 

human participants can be instructed in tasks and provided with oral feedback, there 

is no direct way to communicate task rules to animals. Instead, they generally learn 

the task on the basis of trial and error, and this may lead to between-species 

differences in task representations and learning mechanisms 169. Additionally, 

adjusting task difficulty becomes imperative to achieve comparable behavioral 

outputs, given potential behavioral proficiency variations between species. In 

addition to the grasping paradigm summarized above, promising examples of other 

behavioral tasks studied conjointly in animals and humans include spatial navigation 

170, inferential reasoning 171, inhibition control 172, as well as memory formation in 

infant mice and humans 43,139,140. 

(2) Comparable spacing of observations. The main goal of skill-acquisition studies is to 

observe manifestations of plasticity in brain and behavior over time. Humans and 

animals are likely to differ in initial proficiency and learning rate, which raises the 

question how to align learning trajectories across species. Which equivalence 

relation governs the number of trials in humans and the animal species under 

investigation? At what points in time should brain measures be taken to provide 

assessments that reflect equivalent levels of skill? Plastic responses to challenges 

occur on multiple timescales, and some of them are likely to be non-linear. 

Capturing changes too early, too late, and without a sufficiently large number of 

occasions can result in incomplete or even distorted pictures of underlying 

processes. These concerns are all amplified when trying to align measurement 

protocols across species. 

(3) Training to criterion. Relatedly, it is critical that all members of both species are 

trained to approximately the same criterion level, be it to study plastic changes in the 

course of skill acquisition, or to study subsequent retention and forgetting once the 

skill has been acquired. The methodological lessons learned from conducting age-

comparative research on skill acquisition and forgetting in humans are instructive in 

this regard 173-175. Specifically, training a novel skill to asymptotic levels of 



 26 

performance helps to reduce pre-experimental influences and increase the 

interpretability of neural and behavioral findings 176. 

(4) Comparable ontogenetic status. To better understand similarities and differences of 

the mechanisms that regulate brain plasticity during different periods of 

development, and to study the effects of earlier on later plasticity, we need to relate 

developmental animal models to developmental human data 43. This requires the 

use of longitudinal designs that are matched on developmental age across species. 

Aligning two different species, such as mice and humans, on developmental age is 

inherently problematic. One recently proposed approach is to take epigenetic clocks 

generated by DNA methylation patterns as a comparable yardstick across 

mammalian species 177. DNA methylation parameters can be adjusted for between-

species differences in lifespan, and may ease across-species alignment 177,178. 

(5) Primary versus secondary rewards. Learning tasks in laboratory experiments 

typically entail rewards to motivate participation. Whereas animals receive primary 

rewards, such as food or sweet water, humans typically receive secondary awards 

(e.g., money). In most studies with animals, food restriction in combination with a 

food reward is used to incentivize performance. Across-species differences in 

reward schedules need to be critically evaluated to ensure that learning 

mechanisms and their neural substrate are not differentially influenced by reward 

type 179. This may entail an increased reliance on primary rewards in experiments 

with human participants. 

Enrichment paradigms for animals range from more well-controlled cage settings to quasi-

natural living environments. These paradigms have in common that they create observational 

conditions that allow researchers to link individual differences in brain plasticity to individual 

differences in behavioral development. At the same time, the reduction in experimental 

control relative to skill-acquisition studies comes with ambiguities and confounds that need to 

be kept in mind. The following challenges seem particularly relevant: 

(1) Physical versus social aspects of environmental enrichment. In environmental 

enrichment settings, such as the Individuality Paradigm, it is notoriously difficult to 

delineate and isolate the various aspects or “active ingredients” of the environment 

that trigger plasticity. The classical literature on the subject distinguishes sensory, 

motor, cognitive and social influences, but has not attempted a unifying theory 14. 

Physical aspects of the environment, such as more complex stimuli to process, 

more things to play with, and more opportunities to exercise, and social aspects of 

the environment, such as living in a large group with more frequent and complex 

social interactions among conspecifics, are often inherently confounded, and their 

differential effects on brain and behavior are difficult to disentangle 180. At the same 
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time, enrichments paradigms are the only way to address the interactions among 

these factors, which is lost when attempts are made to address them in isolation. 

We see two ways of addressing the interpretational challenges of enrichment 

designs. The first is to design different types of enriched environments that 

systematically vary in the relative degree of inanimate versus social enrichment. The 

second is to gather rich behavioral data on each individual animal to arrive at 

individualized “lifestyle profiles” that allow researchers to classify individuals on 

relevant dimensions such as exploratory behavior, sociality, hierarchical status, and 

social clustering over time 9. 

(2) Definition of no-enrichment baselines. Defining a no-enrichment baseline relative to 

enriched environments is not straightforward, due to the remarkable adaptability of 

mammalian species to diverse environments. For instance, standard laboratory 

conditions might be considered impoverished relative to the complexity of wild 

environments, so that these studies allow limited conclusions about feral conditions. 

On the other hand, the laboratory mice are well adapted to their laboratory housing, 

such that enrichment results in departure from a new physiological baseline. 

Comparable intricacies arise when trying to define a baseline in the study of human 

living conditions. 

(3) Automated assessment of valid behavioral indicators in animals and humans. When 

studying behavior in ecologically more valid contexts, such as quasi-natural habitats, 

the detailed and valid classification of behavior is of key relevance. Computer vision 

tools permit pose estimation and behavioral analysis with greater ease, detail, and 

precision than manual annotation by human experimenters. For example, 

automated pose estimation allows detection and classification of naturalistic 

behaviors such as foraging, hunting, parenting, or fleeing from a predator. Deep 

learning algorithms can facilitate tracking multiple subjects in group settings or 

studying animal-object interactions 181. Additionally, the identification of animals’ 

facial expressions might be helpful in categorizing responses to different types of 

stimuli. Dolensek and colleagues 182 have shown that mice show different facial 

expressions in response to stimuli of varying emotionally salience. It appears 

promising to map these facial expressions, which have been shown to represent 

distinct emotional states, onto corresponding human facial expressions presumably 

representing analogous states. The ability to track emotional states in mice is 

particularly valuable when trying to identify stressors in mice living in natural habitats 

that resemble stressors experienced by humans. Similar considerations apply for 

measuring everyday behavior in humans using ecological momentary assessment 

105,183. 
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