
Introduction on parallel I/O and distributed file
systems

Slide 2

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

Agenda

1. Basic I/O

2. Parallel file systems

3. Parallel I/O

4. I/O performance analysis

5. Best practice for parallel I/O

Slide 3

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

What is I/O?

• I/O is data migration!
• Between data in memory and a storage medium (e.g. a disk).

• Application libraries gives in-memory data an application
defined structure.

• On disks data is typically stored in files.
• What is a File?

• Unix philosophy says „Everything is a file“.
• Linus Torvalds says „Everything is a stream of bytes“[1].
• POSIX says „An object that can be written to, or read from,

or both. A file has certain attributes, including access
permissions and type. […]”[2].

• A File is just an unstructured stream of bytes.
• Applications must manage I/O to close this semantical gap!

[2] 2018. IEEE Standard for Information Technology–Portable Operating System
Interface (POSIX(R)) Base Specifications, Issue 7. IEEE Std 1003.1-2017 (Revision of IEEE Std 1003.1-2008) (Jan 2018), 1–3951.

[1] https://yarchive.net/comp/linux/everything_is_file.html

Slide 4

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

I/O Stack

• Most applications using POSIX-I/O API to do I/O.

• POSIX API may be Implemented in OS syscalls or additional system

libraries are used for mapping (e.g. libc).

• System Calls are entry into the OS Kernel.

• VFS – virtual file system interface.

• File system works with abstract devices.

• Disk device subsystem does the disk dependent part.

Slide 5

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

• POSIX is the IEEE Portable Operating Standard Interface for Computing Environments.

• POSIX defines a standard way for an application program to obtain basic services from the
operating system.

• Tools, API‘s but also semantical requirements, such as consistency.

• Not just I/O also for Processes, Signals, etc …

• Linux is mostly POSIX-compliant.

• POSIX-I/O defines an interface to work with files.

• read(), write(), open(), close(), stat(), mkdir(), …

• Defines also strong consistency requirements for data and metadata.

• POSIX at all was not designed with parallelism in mind.

POSIX and POSIX-I/O

[3] 2018. IEEE Standard for Information Technology–Portable Operating System
Interface (POSIX(R)) Base Specifications, Issue 7. IEEE Std 1003.1-2017 (Revision of IEEE Std 1003.1-2008) (Jan 2018), 1–3951.

Slide 6

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

• Files consists of data and metadata.

• Metadata include

• Type of file

• Premissions (rwxrwxrwx)

• Timestamps

• Size

• Owner / Group

• Most files provide random access.

• Data is commonly stored in regular files.

• Files are organized by file systems.

Files

Type of Files

Regular file (-)

Directory (d)

Block device (b)

Character device (c)

Symbolic link (l)

Socket (s)

FIFO (named pipe) (p)

Slide 7

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

Role of the file system

• A file system holds a collection of files.

• Maintain the file namespace (mostly

directory hierachy)

• Storing contents of the files.

• Can be added or removed to a namespace.

• Map logical I/O requests from the

applications to physical I/O requests to the

disks.

Slide 8

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

Inode Structure

• Disks can be partitioned with different file systems.

• Disks can be grouped together to one file system.

• Superblock stores general file system metadata.

• File metadata is stored in inode structure.

• Record for metadata

• Information to data blocks

• Each inode within a file system has an unique

number.

• Number of used inodes == number of files.

• No free space for inodes → ENOSPC.

• How inodes are allocated depends on file system.

• Hint: Check for free inodes: df -i

[1] Mathur, Avantika, et al. "The new ext4 filesystem: current status and
future plans." Proceedings of the Linux symposium. Vol. 2. 2007.

Slide 9

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

Linux file system caches

• Multiple caches boosts I/O performance locally.
• Page Cache

• Caches file system pages.
• Dynamically sized
• Modified pages „dirty“ are written back to disk.
• Flushed after: interval, (f)sync(), dirty_ratio

• Directory Cache (dentry cache)
• Remembers mappings from directories.
• Improves performance for path lookups.
• Dynamically sized

• Inode Cache
• Frequently used Inodes
• Improves performance e.g. for stat() and open().
• Most lookups will be done via dentry cache.

[1] Gregg, Brendan. Systems performance: enterprise and the cloud. Pearson Education, 2014.

Slide 10

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

I/O Metrics

• Bandwidth (GB/s) – how many data
can be moved within one second.

• Operations (IOP/s) – how many I/O
operations can be done within one
second.

• Both metrics depend on the latencies
of involved components.

[1] Gregg, Brendan. Systems performance: enterprise and the cloud. Pearson Education, 2014.

Slide 11

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

I/O-Pattern

Sequential I/O

Random I/O

• Different I/O Patterns depending on file offset.
• File systems may try to prefetch data.
• Sequential I/O: next I/O begins at the end of

the previous I/O.
• Random I/O: no apparent relationship

between I/O, offsets changes randomly.

POSIX defines a File offset as:
“The byte position in the file where the next I/O
operation begins. Each open file description
associated with a regular file, block special file, or
directory has a file offset.”

Slide 12

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

Parallel file systems

Slide 13

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

• Network file systems are file systems attached to clients via a network.

• Network file systems provides access to one or more clients who might not have direct access to
the disk.

• Maintains a globally shared namespace for data (single view).

• Transparent: files accessed over the network can be treated the same as files on local disk by
programs and users.

• Network file systems maintain metadata and data on a single server.

• Network file systems e.g. NFS are not designed for parallel access on the same files.

Network file systems and parallel file systems

Slide 14

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

Network file system: Architecture and I/O Stack

Single-Server architecture of a
network file system

Example of an I/O Stack for network file systems

Slide 15

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

• Support for parallel access to files.

• Metadata and data is seperated on different servers.

• „stripes“ data accross multiple disks/server to utilize
parallel bandwidth.

• Focus on concurrent, independent access.

• Using Remote-Direct-Memory-Access (RDMA) for data
access.

Parallel file systems

Slide 16

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

Abbreviation Meaning

MDS Metadata server

MDT Metadata target

MGS Management server

MGT Management target

OSS Object storage server

OST Object storage target – Typically the block
device where data chunks are stored.

Chunk Striped piece of data on an OST (part of a file).

Parallel file system Glossary

Slide 17

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

Striping

• A single file may be split into multiple chunks.

• A chunk is then striped on one or more OSTs.

• Advantages:

• An increase in the bandwidth available when

accessing the file.

• An increase in the available disk space for storing

the file.

• Disadvantages:

• Increased overhead due to network operations

and server contention.

Most parallel file systems allows user to specify the
striping policy for each file or directory of files.

Slide 18

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

Using more OSTS does not increase write performance.

• Single writer

• Unable to take advantage of file system parallelism.

• Access to multiple disks adds overhead which hurts performance.

• File per process

• Performance increases as the number of processes/files until OST and Metadata contention

hinder performance improvements.

• Best performance when the I/O operation and stripe size are similar.

• Larger I/O and matching stipe sizes may improve performance (reduces the latency of I/O op.).

• If each OST is accessed by every process → OST contention, better perf. If each OST is accessed
by only one process.

Striping Considerations

Slide 20

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

Lustre

https://doc.lustre.org/figures/Scaled_Cluster.png

Management Service:
• Provide registry of all components.
• Store configuration information.
• Not involved in I/O.
Metadata Service:
• Provide file system namespace.
• Storing inodes for the file system.
Object Storage Service:
• Provide bulk storage data.
• Files can be written across multipe targets.
• OSSs are the primary scalable service unit.
Clients:
• Mount lustre file system using LNet protocol.
• Presents POSIX-compliant FS to the OS.
Network:
• Lustre network I/O using LNet protocol.
• LNet can aggregate I/O accross independent

interfaces.
• LNet routers provide a gateway between

different LNet networks.

[1] https://wiki.lustre.org

Slide 21

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

Metadata

• Metadata Server (MDS) stores:

• File Metadata (size, owner, permissions, …)

• File layout information.

• How data is distributed over OSTs.

• Client can query by File-Identification (FID).

https://doc.lustre.org/figures/Metadata_File.png

Slide 22

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

File I/O

• Clients must talk to both MDS and OSS servers.
• Opening files, listing directories, … go to MDS.
• File I/O goes directly to one or more OSSs.

1. Client ask MDS for file information.
2. MDS tells the client layout and object

information of the file.
3. Client can directly read/write to OST.
4. Client can directly read/write to OST.

https://doc.lustre.org/figures/File_Write.png

Slide 23

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

• Show available lfs commands.

• lfs –list-commands

• Show capacity information of OSTs of a file system

• lfs df /lustre/scratch2

• Query stripe/layout information of a file or directory.

• lfs getstripe <file|dir>

• Setting the stripe layout for a file or directory.

• lfs setstripe <file|dir> -s <bytes/OST> -o <start OST> -c <#OSTs>

• E.g. to stripe across two OSTs with 4MB stripes, you would call:

• lfs setstripe myfile –s 4m –o -1 –c 2

Working with lustre (lfs) commands

Slide 26

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

Ad-hoc file systems for HPC*

⚫ Isolation of challenging I/O from PFS and the Network

⚫ Using node local fast storages (e.g. SSDs, NVRAM, …)

⚫ Provide a global file system view in a shared namespace

⚫ Job-temporal life time → requires Data Staging

SSD

Compute
Node

SSD

Compute
Node

SSD

Compute
Node

SSD

Compute
Node

Ad-hoc file system

Slurm Job

* Brinkmann, André, Mohror, Kathryn, Yu, Weikuan, Carns, Philip, Cortes, Toni, Klasky, Scott A.,
Miranda, Alberto, Pfreundt, Franz-Josef, Ross, Robert B., and Vef, Marc-André. Ad Hoc File
Systems for High-Performance Computing. United States: N. p., 2020. Web.
https://doi.org/10.1007/s11390-020-9801-1.

Slide 28

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

Parallel I/O

Slide 29

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

Serial I/O

• First collective call to gather the data on
one Process.

• Then this process writes the data to a
single file.

• Memory of a single node might be a
limitation.

• No utilization of parallel bandwidth.

• Simple solution, easy to manage but does
not scale

• Time increases linearly with amount
of data

• Time increases with number of
processes

Slide 30

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

File-per-Process

• Each process writes its own file.
• A single distributed data is spread out in

different files.
• Files not portable
• Multiple output files can result in more

prost processing work.
• Advantages:

• Easy to implement.
• Can utilize parallel bandwidth.

• Disadvantages:
• Number of files creates bottleneck

with metadata operations.
• Number of simultaneous disk

accesses creates contention for file
system resources.

Slide 31

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

Shared-file (single file, multiple writers)

• Each process performs I/O to a single file

which is shared.

• Data layout within the shared file is

important.

• At large process counts contention can

build for file system resources.

Slide 32

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

Shared-file (single file, collective writers)

• Subset of processes which perform I/O.

• Aggregation of a group of processes

data.

• Serializes I/O in group.

How to choose the right number of I/O
processes?

Need to saturate memory bandwidth
within node.

Slide 33

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

Managing Concurrent Access

• Files are treated as random global shared

memory regions.

• Locks are used to manage concurrent access.

• Unit boundaries are dictated by the storage

system regardless of access pattern.

• Clients will obtain locks on units before I/O

occurs.

• Enables caching on clients as well – as long as

client has a lock, it knows its cached data is

valid.

• Locks are reclaimed from clients when other

desire access.

Slide 35

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

• Provides a low-level interface to carrying out parallel I/O.

• Facilitate concurrent access by groups of processes.

MPI-IO can be done in 2 basic ways:

• Independent MPI-I/O:

• Each MPI rank is handling the I/O independently using non-collective calls like MPI_File_write()

and MPI_File_read().

• Similar to POSIX-I/O, but supports derived datatypes and thus noncontigous data and

nonuniform strides and can take advantage of MPI_Hints.

• Collective MPI-I/O:

• When doing collective I/O all MPI tasks participating in I/O has to call the same routines. E.g.

MPI_File_write_all()/MPI_File_read_all().

• This allows the MPI library to do I/O optimization.

MPI-IO

Slide 36

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

• All processes specified in the group by the communicator passed to MPI_File_open() will call this
function.

• Each process specifies only its own access information.

• MPI-I/O library is given a lot of information.

• Collection of processes reading or writing data.

• Structured description of the regions.

• When writing in collective mode, the MPI library carries out a number of optimizations

• Using fewer processes to actually do the writing – typically one per node.

• It aggregates data in appropriate chunks before writing.

• MPI-IO Hints can be given to improve performance by supplying more information to the library.
This information can provide the link between application and file system.

Collective I/O with MPI-I/O

Slide 37

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

Data Sieving

Step 1: Read region to be
modified into intermeidate
buffer.

Step 2: Elements to be written
to file are replaced in the
buffer.

Step 3: Entire region is written
back to file with a single write.

• Technique to address I/O latency by combining operations.
• Larger read and write requests → higher bandwidth, lower latency!
• Doing extra I/O to avoid contention.

Slide 38

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

Two-Phase I/O

Step 1: Data are exchanged between
processes on organization of data in file.

Step 2: Data are written to file, with large
writes and avoid contention.

• Reorder data among processes to avoid lock contention.
• Two-Phase I/O splits I/O into a data reorganization phase and interaction with the file system.
• Data exchanged between processes to match file layout.

[1] Liao, Wei-keng, and Alok Choudhary. "Dynamically adapting file domain
partitioning methods for collective I/O based on underlying parallel file
system locking protocols." SC'08: Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing. IEEE, 2008.

Slide 39

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

Performance Analysis

Slide 40

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

• I/O Performance depends on many factors.

• Access pattern – Application dependent

• Scale / Volume – Number of processes, data volume

• File system – shared medium

• Disk and network type and speed – Hardware dependent

• Network topology – platform dependent + shared medium

Performance Analysis

Slide 41

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

PIKA: Center-Wide and Job-Aware Cluster Monitoring

Web Frontend

Job/System
TimelinesNode

Data-
Collection
Daemon

Batch System

Job
Metadata

Short-term

Time-Series
Database

Performance

Footprints

Long-term

Time-Series
Database

Collection Storage Analysis Visualization

Tags

Job Summary
Table

Job Data & Footprints

Relational
Database

Footprint
Tables & PlotsMaps

• Non-intrusive data acquisition on all
cluster nodes.

• Continous data collection.

• Web frontend for live and post-mortem
visualization.

Software project available at https://gitlab.hrz.tu-chemnitz.de/pika

https://gitlab.hrz.tu-chemnitz.de/pika

Slide 42

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

PIKA Data Collection and Metrics

• Uses collectd collection daemon[1]
• One collector/plugin for each metric

source.
• CPU Counters collected with LIKWID[2].
• All other metrics are collected every

30s.
• Lustre collector: read/write bandwidth

and metadata IOPS.

[1] https://github.com/collectd/collectd

[2] https://github.com/RRZE-HPC/likwid

https://github.com/collectd/collectd
https://github.com/RRZE-HPC/likwid

Slide 43

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

PIKA Job Visualization

Slide 46

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

PIKA Job Footprint Analysis – Search Jobs

Slide 47

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

PIKA Job Footprint Analysis – Search Jobs

Sort jobs by largest write size
from scratch2.

Slide 48

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

PIKA Job Visualization - Footprints

Different runs from
the same code.

Slide 49

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

The darshan I/O-Characterization Tool

• Developed at ANL.
• Uses compiler or LD_PRELOAD

based intstrumentation.
• Writes a log file with aggregated I/O

metrics.
• Post-processing script generates

report.
• Since version 3.0 extended trace

support with:
DXT_ENABLE_IO_TRACE=1

Darshan: https://github.com/darshan-hpc/darshan

https://github.com/darshan-hpc/darshan

Slide 50

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

The darshan I/O-Characterization Tool

Slide 51

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

I/O Recording and Analysis with Score-P and Vampir

• Score-P uses event tracing for data acquisition.
• Applications must be instrumented during compilation.
• Support for multi-layer I/O instrumentation.
• For available layers see: score-p –io=help
• Python support.
• OTF2 – Open Trace Format 2.
• Vampir Analysis Tool.
• Provides a lot displays for performance analysis of OTF2

trace files.

Vampir: https://vampir.eu/
Score-P & OTF2: https://score-p.org
Score-P Python: https://github.com/score-p/scorep_binding_python

https://vampir.eu/
https://score-p.org/
https://github.com/score-p/scorep_binding_python

Slide 52

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

Using Score-P for your application?

PREP = scorep --dynamic --io=runtime:netcdf --io=runtime:posix

CC = $(PREP) gcc

CFLAGS = -Wall -Wextra

instrumented: foo.c

$(PREP) $(CC) $(CFLAGS) -o foo foo.c

#! /bin/bash

#SBATCH -nodes=256

#SBATCH -ntasks=256

#SBATCH ...

export SCOREP_ENABLE_TRACING=true

export SCOREP_ENABLE_PROFILING=false

export SCOREP_TOTAL_MEMORY=256MB

srun -n 256 ./your-app

In your makefile:

In your batch file:

Slide 53

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

I/O operations over time

Individual I/O
Operation

I/O Runtime
Contribution

Slide 54

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

I/O data rates over time

I/O Data Rate of
single thread

Slide 55

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

Support for Metadata Operations

Slide 56

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

Allows for detailed analysis of I/O

Slide 60

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

I/O Best Practice

Slide 61

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

• Read small, shared files from a single task.

• Instead of reading a small file from every task, it is advisable to read the entire file from one

task and broadcast the contents to all other tasks.

• Small file (<1GB) accessed by a single process (set stripe count of 1).

• Medium sized files (>1GB) accessed by a single process – set to utilize a stripe count of no more
than 4.

• Large files (>10GB)

• Stripe count should be adjusted to a value larger than 4.

• Such files should never be accessed by serial I/O or file-per-process I/O pattern.

I/O Best Practices

Slide 62

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

• Limit the number of files within a single directory.

• Incorporate additional directory structure.

• Set stripe count of directories that contain many small files to 1.

• Place small files on single OSTs.

• If only one process will read/write the file and the amount of data in the file is small (<1GB),

performance will be improved by limiting the file to single OST on creation.

• Place directories containing many small files on single OSTs.

• If you are going to create many small files in a single directory, greater efficiency will be

achieved if you have the directory default to 1 OST on creation.

I/O Best Practices (2)

Slide 63

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

• Avoid opening and closing files frequently → this creates excessive metadata overhead

• Use `ls –l`only where absolutely necessary

• Consider that `ls –l`must communicate with every OST that is assigned to a file being listed

and this is done for every file listed. `lfs find`is more efficient solution

• Consider I/O middleware libraries such as SIONlib, ADIOS, (HDF5), (p)netCDF, or MPI-IO.

• Limit the number of files (less Metadata and easier to post process).

• Make large continous requests, group operations → increase bandwidth, decrease latency.

• Prefer collective I/O to independent I/O, especially if operations can be aggregated.

• Use derived datatypes and file views.

I/O Best Practice (3)

Slide 64

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

• Open files in correct mode, allows the system to apply optimisations.

• Write/read arrays datastructures in one call rather then element per element.

• Avoid excessive stdout / stderr output.

• Flush buffers only if necessary.

• Create files independent from number of processes → easier to post process, easier to scale.

• Write/ read only if necessary.

• If you work with a lot of data plan your I/O before writing the code.

I/O Best Practice (4)

Slide 65

Introduction to parallel I/O – NHR Lecture
Sebastian Oeste

Thank you!

Contact: sebastian.oeste@tu-dresden.de

