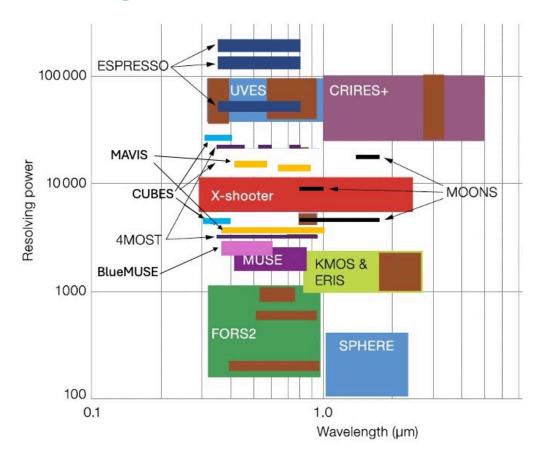


### 2025 - 2030 - (2035)

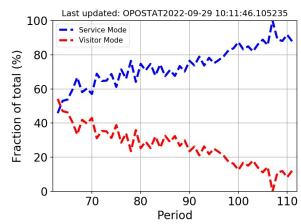

## Optical/Near-IR coverage from the ground/ESO

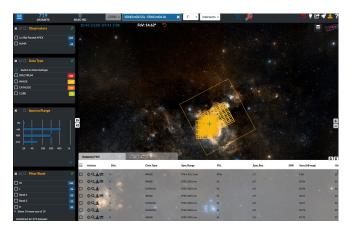


Unique parameter space coverage (e.g., wavelength, spectral and angular resolution, multiplexing) with specialized and general-purpose instruments.

New instruments ready for the beginning of 2030s will maximize the complementarity with the ELT:

- The exploration of the UV and blue end (e.g., CUBES, BlueMUSE).
- Exploit AO at shorter wavelengths (MAVIS).
- And more as part of the "VLT 2030" process (e.g. second DSM).





### **ESO** operations: reliable and flexible

+ES+ 0 +

- Service Mode and Visitor Mode
- DDT channel
- The transient sky:
  - Flexible scheduling
  - Variables timescales
  - Large Target of Opportunity fraction
  - Rapid Response Mode
  - Systematic archiving:
    - Time series
    - Advanced data products

#### Service/Visitor request (Normal, UTs only)





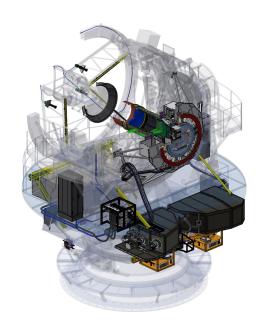
## 2025 - 2030 - (2035)

#### +ES+ 0 +

#### Massive spectroscopic surveys publicly available

- New KMOS public surveys (200 nights)
- Massive Spectroscopic Surveys with millions of high-quality spectra:
  - MOONS VLT multiplex=1000,  $0.65\mu$ m <  $\lambda$  <  $1.8\mu$ m R= 5,000 20,000
  - 4MOST VISTA multiplex=2300,  $0.37 \mu \text{m} < \lambda < 0.9 \mu \text{m}$  R= 5,000 20,000
  - PFS Subaru multiplex=2300,  $0.37\mu$ m<  $\lambda$  <  $1.2\mu$ m R= 5,000
  - FOBOS Keck multiplex=1800,  $0.31\mu$ m<  $\lambda$  <  $1\mu$ m R= 3,000

### **4MOST**


#### www.4most.eu



P.I. Roelof de Jong (AIP)

Start operations: Q4 2025

| Specification                                                                                            | Design value                                                                                  |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Field-of-View (hexagon)                                                                                  | ~4.2 degree <sup>2</sup> (Ø>2.6°)                                                             |
| Multiplex fiber positioner                                                                               | 2436                                                                                          |
| Medium Resolution Spectrographs (2x) # Fibres Passband Velocity accuracy Spectral sampling (pixels/FWHM) | R~4000-7500<br>812 fibres (2x)<br>370-950 nm<br>< 1 km/s<br>> 2.8 pixels                      |
| High Resolution Spectrograph (1x) # Fibres Passband Velocity accuracy Spectral sampling (pixels/FWHM)    | R~20,000<br>812 fibres<br>392.6–435.5 nm, 516–573 nm, 610–679 nm<br>< 1 km/s<br>> 2.56 pixels |























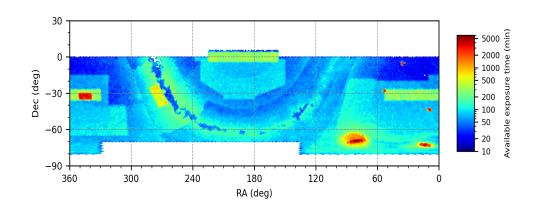















## 4MOST surveys (2025-2030), but also -2035



- Unique operations model for MOS instruments at ESO to maximize the science return
- 4MOST program defined by *Public Surveys (raw data immediately public)* of 5 years
- All Surveys will run in parallel
  - > Surveys share fibres per exposure for increased efficiency
- Key Surveys set observing strategy
  - Millions of targets all sky
- Add-on Surveys for smaller surveys
- Several passes of sky with exposures ~20 mins
- Wedding-cake distribution for total time 1h to 10h



Approved surveys: 10 Consortium surveys + 15 Community surveys

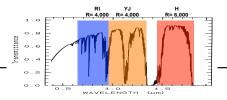
### **MOONS**

P.I. Michele Cirasuolo

Start of operations: Q4 2025



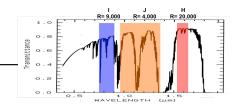
Field of view: 500 sq. arcmin at the


8.2m VLT

Multiplex: 1000 fibers

#### **Medium resolution:**

Simultaneously 0.64µm-1.8µm


- 0.64-0.95µm at R=4,000
- 0.95-1.35µm at R=4,000
- 1.42-1.81µm at R=6,600



#### High resolution:

Simultaneously 3 bands:

- $0.76-0.90\mu m$  at R = 9,000
- 0.95-1.35µm at R=4,000
- 1.52-1.63µm at R=20,000







www.vltmoons.org



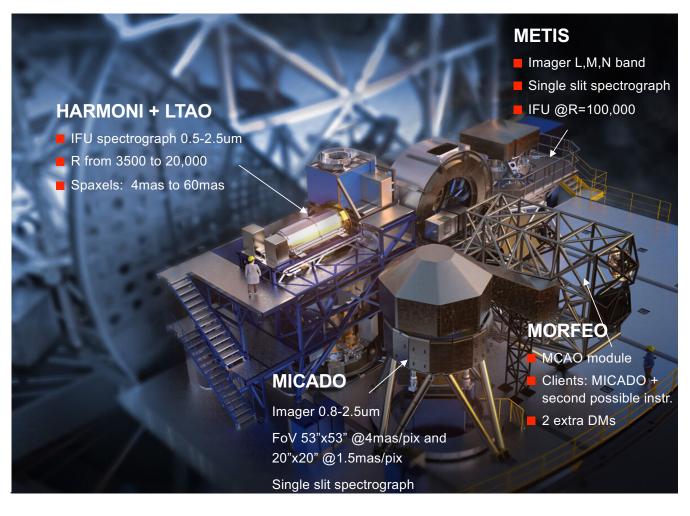
### 2029 - 2039

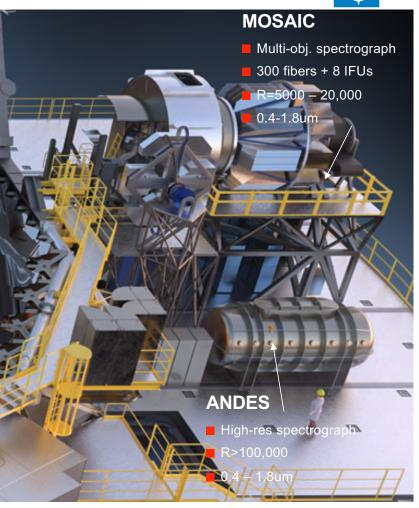


**ELT** 39m diameter



**TMT** 30m diameter



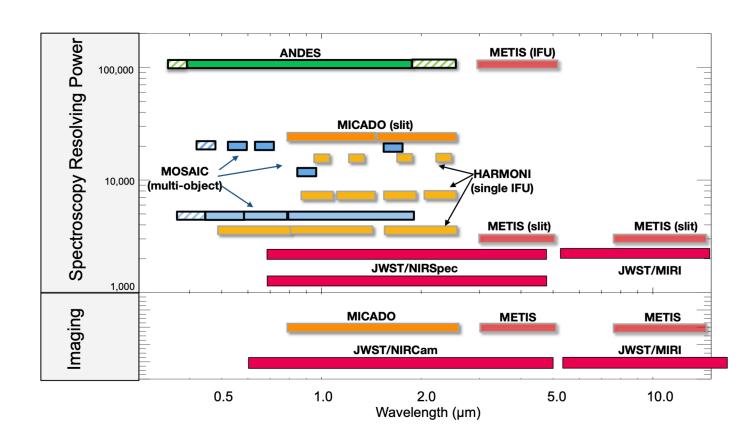


**GMT** 25m diameter



### **ELT Instruments**








9

## **ELT and JWST capabilities**

#### Spectral resolving power and wavelength





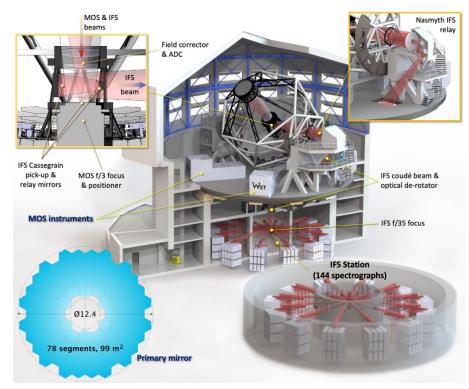
## 2040+ ESO's next programme – after ELT



- ESO about to launch the process to identify the next programme
- Which fundamental problems in astronomy are expected to be addressed?
- A new transformational facility
- 2 years of scientific dialogue and debate around scientific challenges of the 2040s, and disruptive technologies.
- Then a call for ideas



## Wide-field Spectroscopic Telescope




EU HORIZON funded concept study 2025-2028



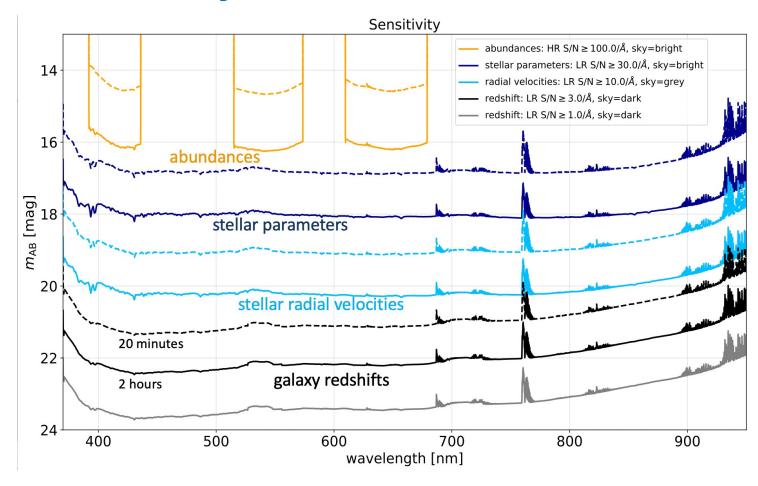
| Telescope aperture (M1)       | 12 m<br>seeing limited                                                           |                             |                                                                 |
|-------------------------------|----------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------|
| Telescope FoV                 | 3.1 deg <sup>2</sup>                                                             |                             |                                                                 |
| Telescope Spec. range         | 0.35-1.6 μm                                                                      |                             |                                                                 |
| Operations                    | MOS and IFS simultaneous operations ToO implemented at telescope and fibre level |                             |                                                                 |
| Modes                         | MOS-LR                                                                           | MOS-HR                      | IFS                                                             |
| FoV                           | 3.1 deg <sup>2</sup>                                                             | 3.1 deg <sup>2</sup>        | 3x3 arcmin <sup>2</sup><br>(mosaic on 9x9 arcmin <sup>2</sup> ) |
| Spectral range (simultaneous) | 0.37-0.97 μm                                                                     | 0.37-0.97 μm<br>3-4 windows | 0.37-0.97 μm                                                    |
| Spectral resolution           | 4000                                                                             | 40000                       | 3500                                                            |
| Multiplexing                  | 20000                                                                            | 2000                        |                                                                 |

Join the WST Science Team!



A general purpose, wide-field, high-multiplex (MOS+IFU) spectroscopic facility on a 11m telescope




# Thank you!

Vincenzo Mainieri vmainier@eso.org

- f @ESOAstronomy
- @esoastronomy
- ©ESO
- in european-southern-observatory
- @ESOobservatory

## **4MOST Sensitivity**





### **MOONS**

P.I. Michele Cirasuolo

Start of operations: Q4 2025

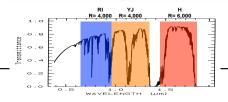




Field of view: 500 sq. arcmin at the

8.2m VLT

Multiplex: 1000 fibers


#### **Medium resolution:**

Simultaneously 0.64µm-1.8µm

• 0.64-0.95µm at R=4,000

• 0.95-1.35µm at R=4,000

• 1.42-1.81µm at R=6,600



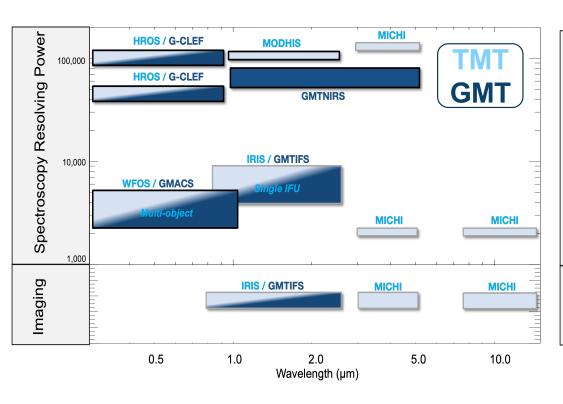
Sensitivities in **1hr** integration:

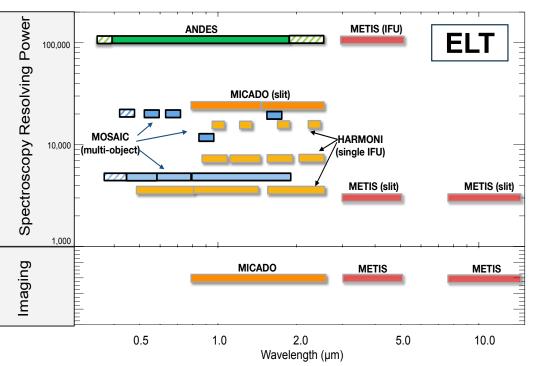
#### **Emission lines**:

 $2 \times 10^{-17} \text{ erg/s/cm}^2 (5\sigma)$ 

#### Continuum:

AB = 22.7 (5 $\sigma$ ) with the spectrum rebinned, after sky subtraction, to an effective resolution of R=1,000





www.vltmoons.org



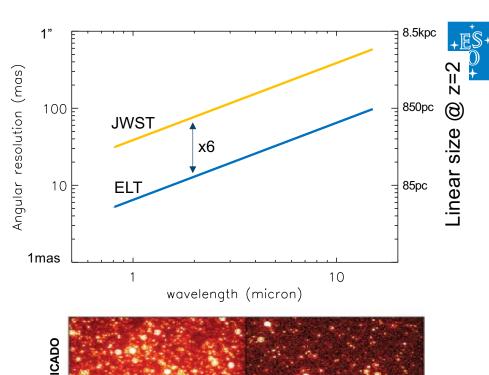
### **Instrumentation at the ELTs**

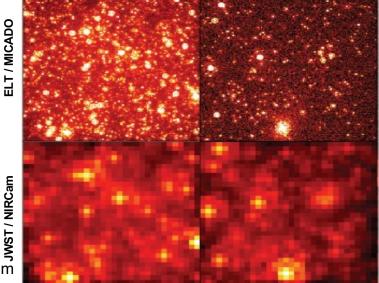






## **ELT and JWST capabilities**


Angular resolution and image quality

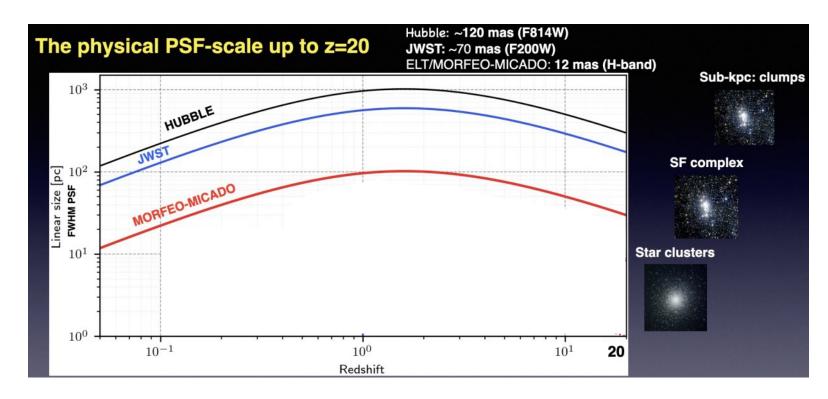

#### Angular resolution ( $\theta \sim \lambda/D$ )

- ELT  $\theta_H \approx 10 \text{ mas}$
- 6x better than JWST

### Sensitivity ( $\sim D^2/\theta^2 \propto D^4$ )


- Sensitivity boost with flux concentration
- 500x better than 8m seeing-limited telescopes






Credit: MICADO Consortium

## **ELT and JWST capabilities**







Credit: E. Vanzella, MORFEO Consortium

#### 2029 - 2039

#### Landscape and new projects

- ELT in operation
- 8-10m class ground-based telescope still going strong with new instruments:
  - e.g. for VLT: MAVIS (visible AO imager and spectrograph),
     BlueMUSE (opt/UV IFU)
- ALMA upgraded with new correlator

Some projects still in development: what are the key capabilities that you need?



Sensitivity / depth /collecting area



Wavelength coverage and spectral resolution



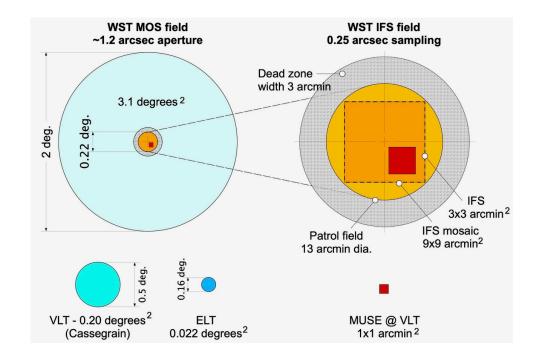
Field of view and angular resolution



Multiplex



Target density

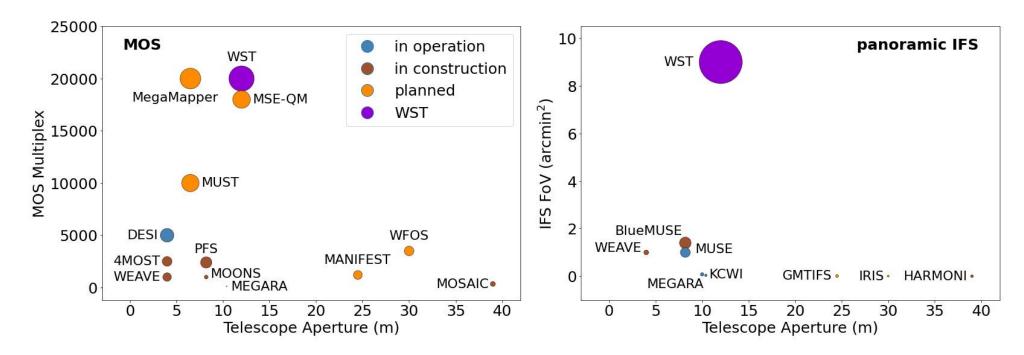



### Wide-field Spectroscopic Telescope



- A multi-purpose facility covering a wide range of science topics (Mainieri+24)
- 3-years (2025-2028) concept study approved with HORIZON EU funding

Join the WST Science Team!




https://www.wstelescope.com/



## **Comparison with other facilities**





Comparison of MOS (left panel) and IFS (right panel) capabilities with existing and proposed ground-based spectroscopic facilities. Circle areas are proportional to the etendue (i.e., aperture times field of view area).