

LISA Astrophysics Working Group Meeting, MPA, Nov 2024

Identifying eccentric black hole mergers in dynamical formation environments

Kai Hendriks Niels Bohr Institute, University of Copenhagen

Supervised by Johan Samsing

Motivation: different formation channels

Active galactic nuclei

Motivation: the dynamical channel

How can we probe the dynamical origin of eccentric BBHs from *individual GW events?*

Setup

Fig. 2: setup of our system of interest.

Fig. 3: perturbed waveform due to Rømer delay.

$$
d\phi \approx 2\pi \frac{\Delta t(t)}{T_{12}(t)}
$$

Phase shift

 $\boxed{\Delta \phi (e) \approx \frac{288 \sqrt{2}}{85^2 g (1)^{13/2}} \frac{c^9}{G^{9/2}} \times \frac{m_3}{R^2} \frac{r_0^{13/2}}{m_1^2 m_2^2 m_{12}^{3/2}}}$ $\times e^{78/19}(1-e^2)^{1/2}g(e)^{13/2}$

Phase shift peaks when e~0.95!

How high can the phase shift get?

Take your favourite few-body simulation code

Simulate many binary-single interactions typical for clusters

Calculate the phase shift for those in triple configuration

How high can the phase shift get?

Fig. 4: maximum phase shift as a function of the peak GW frequency at formation of the binary. We use an equal mass triple of 20 solar masses. The different colours represent different initial semi-major axes: from 0.01 AU (blue) to 0.1 AU (red) and 1 AU (orange). The horizontal lines are the astrophysically expected upper limits.

How can we probe the dynamical origin of eccentric BBHs from *individual* GW events?

3G detectors such as LISA/ET/CE may be able to detect this environmental effect

Questions?

Contact me at kai.hendriks@nbi.ku.dk!

Astrophysical scenarios: 3-body scatterings

Fig. 13: examples of 3-body scatterings that lead to phase shifts higher than the theoretical maximum.

Astrophysical scenario: 3-body scatterings

Fig. 8: 3-body scattering (5, 15 and 15 Msun) resulting in an inspiralling and merging binary on a bound orbit around a third object.

Astrophysical scenario: 3-body scatterings

Fig. 9: binary COM, reference trajectory and perturber trajectory of the scattering in question. We can extract the Rømer delay and phase shift from this.

Fig. 10: phase shift of this scattering, as a function of time Fig. 10: phase shift of this scattering, as a function of time 12
(top) and binary eccentricity (bottom).

Phase shift: eccentric outer orbit

Fig. 7: phase shift as a function of time, for different realisations of $f_{\rm m}$, ranging from -¾ π to ¾ π. We still use an eccentric 5 M $_{\odot}$ equal-mass binary, inspiralling on an eccentric orbit (e=0.9, a=30 $\rm R_{\odot}$) around a 100 $\rm M_{\odot}$ perturber. The binary assembles at a semi-major axis a $_{0}$ =1.3 $\rm R_{\odot}$ and e $_{0}$ = 0.9999.

Stereoscopic images

Phase shift: analytical approximation

● Problem: no analytical description when outer orbit is eccentric

Fig. 9: trajectories and phase shift of an eccentric 5 $\rm M_{\odot}$ equal-mass binary, inspiralling on an eccentric orbit (e=0.9, a=30 $\rm R_{\odot}$) around a 100 M_{$_{\odot}$} perturber. The binaries assemble at a semi-major axis a₀=1.3 $\rm R_{\odot}$ and e $_{\rm 0}$ = 0.9999, for 4 different outer phases at merger.

$$
\Delta\phi(e) \approx \frac{288\sqrt{2}}{85^2 g(1)^{13/2}} \frac{c^9}{G^{9/2}} \times \frac{m_3}{R^2} \frac{r_0^{13/2}}{m_1^2 m_2^2 m_{12}^{3/2}}
$$

$$
\times e^{78/19} (1 - e^2)^{1/2} g(e)^{13/2}
$$

Phase shift: circular outer orbit

Fig. 6: trajectory and phase shift of an eccentric 5 M_☉ equal-mass binary, inspiralling on a circular orbit (30 R_☉) around a 100 M_☉ perturber. The binary assembles at a semi-major axis a $_{0}$ =1.3 ${\rm R}_{_{\bigodot}}$ and ${\rm e}_{_{0}}$: $= 0.9999.$ 16

Phase shift: effect of outer eccentricity

Fig. 8: trajectory and phase shift of an eccentric 5 M_☉ equal-mass binary, inspiralling on an eccentric orbit (e=0.9, a=30 R_☉) around a 100 M_☉ perturber. The binary the straty the strate of the strate of the strate o assembles at a semi-major axis a $_{0}$ =1.3 $\rm R_{\odot}$ and e $_{0}$ = 0.9999, and merges at pericentre ($\rm f_{m}^{\,}$ =

Phase shift: eccentric outer orbit

Fig. 10: trajectory and phase shift of an eccentric 5 M_☉ equal-mass binary, inspiralling on an eccentric orbit (e=0.9, a=30 R_☉) around a 100 M_☉ perturber. The binary assembles at a semi-major axis a $_{0}$ =1.3 R $_{\odot}$ and e $_{0}$ = 0.9999, and merges at $\rm{f_{m}^{\,}}$: $= -34$ π. 18

Phase shift: effect of the outer eccentricity

Fig. 9: trajectory and phase shift of an eccentric 5 M_☉ equal-mass binary, inspiralling on an eccentric orbit (e=0.9, a=30 R_☉) around a 100 M_☉ perturber. The binary assembles at a semi-major axis a $_{0}$ =1.3 $\rm R_{\odot}$ and e $_{0}$ = 0.9999, and merges at apocentre ($\rm f_{m}^{}$ $=$ π). 19

Astrophysical scenario: 3-body scatterings

Fig. 11: 3-body scatterings with GW mergers in a stellar cluster..