BRAHMA cosmological simulations: Unveiling the origins of supermassive black holes using LISA

Aklant Kumar Bhowmick Galaxy Evolution and Cosmology Fellow University of Virginia

Origin of supermassive black holes: A big cosmic mystery!

Three most popular candidates for seeds of supermassive black holes

Runaway collisions of stars in dense nuclear star clusters

 $\sim 10^3 - 10^4 M_{\odot}$ Medium weight

NSC seeds

Manue 's talk! **Bastian's talk!**

Direct Collapse Black Holes

 $\sim 10^4 - 10^5 M_{\odot}$ Heavy

Direct collapse of gas

DCBH seeds

Cosmological simulations can produce statistically large samples of merging BH binaries to compare with LISA

A long standing challenge: Cosmological simulations often cannot resolve the seed masses

Light \sim $10^2 M_{\odot}$

Pop III seeds

Medium weight $\sim 10^3 - 10^4 M_{\odot}$

NSC seeds

Heavy

 $\sim 10^4 - 10^5 M_{\odot}$

 $\gtrsim 10^5 M_{\odot}$

Simulation mass resolution

DCBH seeds

The vast majority of simulations use very simplistic sub-grid black hole seed models

Minimum halo mass threshold

Cosmic time

Many recent simulations use more physically motivated seed models

Horizon-AGN Kaviraj et al 2016

Seed based on local gas properties!

ROMULUS Tremmel+2017

SuperChunky Habouzit+2016

Due to uncertain seeding mechanisms, we need to *systematic exploration of seed model variations!

Semi-Analytic models

- Barausse 2012
- **Ricarte and Natarajan 2018**
- Dayal et al 2018
- Banik et al 2019
- Degraf et al 2020
- Sassano et al 2021
- Spinoso et al 2022
- Trinca et al 2022, 23, 24
- Evans et al 2023

BRAHMAsimulations A large systematic exploration of seed model variations IllustrisTNG + Seed model variations

Low mass seeds (Pop III and NSC)

Heavy seeds (DCBH)

How do we model low mass seeds in BRAHMA? Surpassing the resolution limitation

Surpassing the resolution limit in BRAHMA Multiple simulation boxes with increasing volumes and decreasing resolution Largest volume, lowest resolution

Smallest volume, highest resolution

Bhowmick et al 2024b

Explicitly resolve low mass ($\sim 10^3 M_{\odot}$) seeds only in the smallest volume box Seeding in halos with sufficient dense and metal poor gas

Smallest volume, highest resolution

Gas density

50 kpc/h

Bhowmick et al 2021

Following the growth of these low mass ($\sim 10^3 M_{\odot}$) seeds along the galaxy merger tree Resolved seeds Bhowmick et al 2024

Time

L = 9.Mpc

00

L = 36 Mpc

Tracing the galaxies wherein these seeds assembled higher mass descendants

L = 9.Mpc

Time

Resolved seeds

Bhowmick et al 2024

L = 36 Mpc

Seeding these descendants in the larger volume simulations

Time

L = 9 Mpc

Higher mass descendants

A new subgrid "stochastic seed model" to represent low mass seeds in larger cosmological volumes without the need to resolve them

Bhowmick et al 2024a

How do we model heavy seeds in BRAHMA?

Additional criteria beyond high density and low metallicity gas

Bhowmick et al 2022a

Rich environment At least one neighboring galaxy

Lewis' talk

Implications for LISA!

Laser Interferometer Space Antenna

Merger rates (upper limits) of $\geq 10^3 M_{\odot}$ BHs

Bhowmick et al 2024b

Strong sensitivity to the seeding environment!

Up to ~200-2000 potential mergers year per

Merger rates (upper limits) of $\geq 10^3 M_{\odot}$ Bus

Merger rates (upper limits) of $\geq 10^5 M_{\odot}$ BHs

Bhowmick et al in prep

Formed as heavy seeds

VS

Descendants of low mass seeds

20

1) We present BRAHMA, a new cosmological simulation suite that systematically explores the impact of black hole seeding on high-z supermassive BH populations.

2) BRAHMA implements novel seed models, including an approach to model seeds ~10-100 times below the simulation resolution.

3) Simulations provide upper limits of 200-2000 mergers per year for LISA. The merger rates are strongly sensitive to the seeding environment and seed mass.

LISA will revolutionize our understanding of supermassive black hole origins

Cosmological simulations like BRAHMA will play a key role in making this happen!

Conclusions

AGN luminosity functions: Seed models have no consequence at the bright (observable) end

Broad agreement with JWST

But the BH mass - stellar mass relations have substantial seed model variations

If heavy seed formation is efficient enough, one could produce overmassive BHs via BH-BH mergers

Modeling heavy seeds in large cosmological simulations?

Additional criteria beyond high density and low metallicity gas

Minimum Lyman Werner flux

Maximum gas spin Toomre instability threshold

See Lewis Prole's talk

Typical sites for DCBH formation

Gas density

Heavy (DCBH) seed

No star formation at the seeding site

Typical sites for DCBH formation

Gas density

Heavy (DCBH) seed

No star formation at the seeding site

Low mass (Pop III or NSC) seed

Active star formation at the seeding site

Merger rates (upper limits) of $\geq 10^3 M_{\odot}$ Bus

Simulations have started adopting more physically motivated seeding prescriptions Seeding based on local gas properties

Horizon-AGN Kaviraj et al 2016

Taylor and Kobayashi+ 2014 Wang+ 2019 Bellovary+ 2019

ROMULUS Tremmel+2017

SuperChunky Habouzit+2016

Due to uncertain seeding mechanisms, we need systematic exploration of seed model variations

Semi-Analytic models

- Barausse 2012
- **Ricarte and Natarajan 2018**
- Dayal et al 2018
- Banik et al 2019
- Degraf et al 2020
- Sassano et al 2021
- Spinoso et al 2022
- Trinca et al 2022, 23, 24
- Evans et al 2023

We are pushing new observational frontiers for high-z black holes, and will continue to do so!

Future LISA observations $\sim 10^3 - 10^7 M_{\odot}$ up to z ~ 15 Crucial time to make theoretical predictions!!

Current JWST observations $\sim 10^6 - 10^8 M_{\odot}$ BHs at z ~ 4 - 11

The vast majority of simulations use very simplistic black hole seed models

Minimum halo mass threshold

Cosmic time

What were the first "seed" black holes that grew into supermassive black holes?

$\sim 10^6 - 10^{10} M_{\odot}$

Zoom simulations predictions are difficult to compare with Observations Bhowmick et al 2021, 2022, 2023

How do we model these low mass seeds in large cosmological simulations? **Surpassing the resolution limitation**

Bhowmick et al 2024

Ipc

Having multiple simulation boxes with increasing volumes and decreasing resolution

Smallest volume, highest resolution

Bhowmick et al 2024

Largest volume, lowest resolution

Placing seeds in the smallest volume box

Smallest volume, highest resolution

50 kpc/h

Bhowmick et al 2023

Following the growth of these low mass seeds along the 'evolution tree' of their host galaxies Light seeds

L = 9.Mpc

Time

L = 36 Mpc

Bhowmick et al 2024

Tracing the galaxies wherein these low mass seeds assembled higher mass descendants Light seeds

Time

L = 9.Mpc

Bhowmick et al 2024

L = 36 Mpc

Seeding these descendants in the larger volume simulations

Time

L = 9 Mpc

Light seeds Bhowmick et al 2024 L = 36 Mpc

Higher mass descendants

A new "stochastic seed model" to represent low mass seeds in larger cosmological volumes without the need to resolve them

Bhowmick et al 2024a

How do we model heavy DCBH seeds in large cosmological simulations?

To model direct collapse black hole formation conditions How to suppress molecular hydrogen cooling in pristine dense gas

 γ_{UV}

Destroy H2 with ultraviolet radiation

I ensure that seeds are only forming in dense and metal poor gas pockets with sufficient UV radiation

DCBH heavy seed formation site

Bhowmick et al 2022a

I ensure that seeds are only forming in dense and metal poor gas pockets with sufficient UV radiation

DCBH heavy seed formation site

Bhowmick et al 2022a

Pop III or NSC seed formation site

BRAHMA simulations: Exploring the impact of black hole seeding in earliest supermassive black hole populations

Data to be made public soon!

Predictions from BRAHMA simulations

Previous literature

Intermediate-mass black hole populations with LISA $\sim 10^3~M_{\odot}$ BHs mergers rates: Light seed model predictions Caveat assumption: For every galaxy merger, there is a black hole merger My predictions ~200-2000 events per year

25

Bhowmick et al 2024

20

Upper limits for LISA event rates

Intermediate-mass black hole populations with LISA $\sim 10^5~M_{\odot}$ BH mergers rates : Light vs heavy seed model predictions

Descendant of a low mass seed

Distinct imprints of light vs heavy seeds in the LISA event rates

Formed as a VS heavy seed

Bhowmick et al 2024

Supermassive black hole populations with JWST

ow mass seed models can reproduce the JWST observations. Heavy seed models cannot reproduce the JWST observations

Bhowmick et al 2024

Main takeaways from past research

in cosmological simulations.

observations from LISA and JWST

evolution

1) Transforms our ability to model the formation of black holes

- 2) Predicts unique observable signatures of different black hole formation theories within gravitational-wave and electromagnetic
- 3) Lays the foundation for my future research on early black hole

Future Research (5 yr horizon): Confront every aspect of the earliest black hole evolution Black hole seeding

Black hole accretion

Black hole dynamics

Black hole feedback

Step 1: Dynamics of merging black hole seeds

Bhowmick et al (ongoing) What fraction of seeds can effectively merge and contribute to LISA events?

Step 2: Gas accretion onto black hole seeds

10 kpc

~1000 kpc scales Galaxy cluster

~0.01 pc scales Accretion disk of a supermassive black hole 100 kpc

Hopkins et al 2023

Step 3: Black hole feedback

How do black hole seeds interact with earliest galaxies?

Milky-way galaxy simulation

Gas Density MW 1 kpc

0.846Gyr 0.846Gyr Sivasankaran et al 2024

Gas Temperature

Black hole injecting energy and heating the gas

Future Outlook (5 yr horizon): Confront every aspect of supermassive black hole physics

Black hole seeding

Black hole accretion

Black hole dynamics

Black hole feedback

Supermassive and Intermediate mass black hole populations

Future Outlook (10 yr horizon)

Physics of dark energy and dark matter

Physics of the baryons

Observed black hole and galaxy populations

Physics of the black holes

Conclusions

- The missing origins of supermassive black holes is a crucial component for understanding our Universe?
- Using cosmological simulations, I have built the necessary foundation to reveal the missing supermassive blackhole origins from current and future observations?
- My research propels me towards future initiatives and broader questions about black hole evolution, and about the fundamental components of Universe in the longer run.

BACK UP SLIDES

Leveraging the golden age of AI and machine learning

I will confront our entire structure formation paradigm with all available observations

Training and testing data Large suite of cosmological simulations with systematic variations in unknown physics parameters

Deployment data Multi-messenger, multi-epoch and multiwavelength observations of galaxy and black hole populations

Future Outlook (5 yr horizon): Confront every aspect of supermassive black hole physics

Bourne et. al. 2023

Imprint the impact of small scale physics in the modeling of large scale simulations

Bhowmick et al 2024

Observational support for the impact of supermassive black holes in their surrounding larger scale environment

X ray cavities in clusters

NASA / CXC / University of Bologna / F. Ubertosi / STScl / M. Calzadilla / NSF / NRAO / ALMA

Supermassive black holes may be major players in the evolution of the Universe

To model the impact of dynamical heating, DCBHs are seeded in rich environments with multiple neighboring galaxies

Gas cloud

Segments of the cloud will collapse if it exceeds the Jeans' Mass $~M_{I} \propto T^{3/2}$

Gas cloud

Jeans' instability: Gravity vs Thermal pressure

How do the seed black holes form?

Jeans' instability criterion of a segment of gas cloud of mass M and temperature T. $M_I \propto T^{3/2}$ The cloud will collapse if it exceeds the Jeans' Mass

Typical gas cloud Low Temperature, 10-30 K

Ordinary star formation, stellar mass black holes

Jeans' instability criterion of a segment of gas cloud of mass M and temperature T. The cloud will collapse if it exceeds the Jeans' Mass $~M_{I} \propto T^{3/2}$

Typical gas cloud Low Temperature, 10-30 K

Ordinary star formation leading to Stellar mass black holes

The cloud will collapse if it exceeds the Jeans' Mass

Typical gas cloud Low Temperature, 10-30 K

Pop III star formation, producing more massive remnants

- Jeans' instability criterion of a segment of gas cloud of mass M and temperature T. $M_I \propto T^{3/2}$
 - Pristine gas cloud (no metals) Higher temperatures ~100-1000K

Jeans' instability criterion of a segment of gas cloud of mass M and temperature T. The cloud will collapse if it exceeds the Jeans' Mass $\,M_{I}\,\propto\,T^{3/2}$

Pristine gas cloud (no metals) Higher temperatures ~100-1000K

Pop III star formation, producing more massive remnants

Pristine gas cloud (no metals) No molecular hydrogen Highest temperatures > 10000 K

No Pop III star formation

Gas directly collapses to most massive remnants

Huge amount of investment to reveal black hole populations across the entire cosmic timeline by the ~2040s

Huge amount of investment to reveal black hole populations across the entire cosmic timeline by the ~2040s

Earliest black hole

Two possible avenues for assembling the $z\sim6$ quasars:

GN-z11 (Maiolino+2023) CEERS_1019 (Larsen+2023)

> 15 20 Redshift

Avenue 1: If we form higher number of seeds, early growth can be boosted by BH-BH mergers

Avenue 2: Allowing for Super-Eddington accretion

