BRAHMA cosmological simulations: Unveiling the origins of supermassive black holes using LISA

Aklant Kumar Bhowmick Galaxy Evolution and Cosmology Fellow University of Virginia

Origin of supermassive black holes: A big cosmic mystery!

Direct Collapse Black Holes

Heavy $\sim 10^4 - 10^5 \ M_{\odot}$

Direct collapse of gas

DCBH seeds

Medium weight $\sim 10^3 - 10^4 M_{\odot}$

Three most popular candidates for seeds of supermassive black holes

Runaway collisions of stars in dense nuclear star clusters

NSC seeds

Manuel's talk! Bastian's talk!

Cosmological simulations can produce statistically large samples of merging BH binaries to compare with LISA

A long standing challenge: Cosmological simulations often cannot resolve the seed masses

Light ∼ 102 *M*[⊙] Medium weight $\sim 10^3 - 10^4$ M_{\odot}

Pop III seeds

Simulation mass resolution

≳ 105 *M*[⊙]

 $\sim 10^4 - 10^5 M_{\odot}$

NSC seeds

Heavy

DCBH seeds

The vast majority of simulations use very simplistic sub-grid black hole seed models

Minimum halo mass threshold

Many recent simulations use more physically motivated seed models

Horizon-AGN Kaviraj et al 2016

Seed based on local gas properties!

ROMULUS Tremmel+2017

SuperChunky Habouzit+2016

Due to uncertain seeding mechanisms, we need to *systematic exploration of seed model variations!

Semi-Analytic models

- Barausse 2012
- Ricarte and Natarajan 2018
- Dayal et al 2018
- Banik et al 2019
- Degraf et al 2020
- Sassano et al 2021
- Spinoso et al 2022
- Trinca et al 2022, 23, 24
- Evans et al 2023

BRAHMA simulations A large systematic exploration of seed model variations IllustrisTNG + Seed model variations

Low mass seeds (Pop III and NSC)

Heavy seeds (DCBH)

How do we model low mass seeds in BRAHMAR Surpassing the resolution limitation

 $\gtrsim 10^5 M_{\odot}$ Heavy $\sim 10^4 - 10^5 M_{\odot}$ Simulation mass resolution

Smallest volume, highest resolution

Multiple simulation boxes with increasing volumes and decreasing resolution Largest volume, lowest resolution **Surpassing the resolution limit in BRAHMA**

Bhowmick et al 2024b

Smallest volume, highest resolution

50 kpc/h

Explicitly resolve low mass ($\sim 10^3$ M_{\odot}) seeds **only in the smallest volume box** $(~\sim 10^3~M_{\odot})$ Seeding in halos with sufficient dense and metal poor gas

Bhowmick et al 2021

Bhowmick et al 2024 Resolved seeds Following the growth of these low mass ($\sim 10^3~M_\odot$) seeds **along the galaxy merger tree** $({\sim 10^3~M_{\odot}})$

90

Time

 $L = 9$ Mpc

$L = 36$ Mpc

Tracing the galaxies wherein these seeds assembled higher mass descendants

$L = 9$ Mpc

Time

Resolved seeds

Bhowmick et al 2024

$L = 36$ Mpc

Higher mass descendants

Seeding these descendants in the larger volume simulations

Time

 $L = 9$ Mpc

A new subgrid "stochastic seed model" to represent low mass seeds in larger cosmological volumes without the need to resolve them

Bhowmick et al 2024a

How do we model heavy seeds in BRAHMAR

Additional criteria beyond high density and low metallicity gas

Bhowmick et al 2022a

Rich environment At least one neighboring galaxy

Implications for LISA!

Laser Interferometer Space Antenna

Strong sensitivity to the seeding environment!

Up to ~200-2000 potential mergers per year

Merger rates (upper limits) of $\geq 10^3$ M_{\odot} BHs

Bhowmick et al 2024b

Merger rates (upper limits) of $\geq 10^3~M_{\odot}$ Bus

Merger rates (upper limits) of $\geq 10^5$ M_{\odot} BHs

20

Formed as heavy seeds

Descendants of low mass seeds

VS

Bhowmick et al in prep

1) We present BRAHMA, a new cosmological simulation suite that systematically

~10-100 times below the simulation resolution.

- explores the impact of black hole seeding on high-z supermassive BH populations.
- 2) BRAHMA implements novel seed models, including an approach to model seeds
	-
	-
- Cosmological simulations like BRAHMA will play a key role in making this happen!

3) Simulations provide upper limits of 200-2000 mergers per year for LISA. The merger rates are strongly sensitive to the seeding environment and seed mass.

LISA will revolutionize our understanding of supermassive black hole origins

Conclusions

AGN luminosity functions: Seed models have no consequence at the bright (observable) end

Broad agreement with JWST

But the BH mass - stellar mass relations have substantial seed model variations

If heavy seed formation is efficient enough, one could produce overmassive BHs via BH-BH mergers

Modeling heavy seeds in large cosmological simulations?

Additional criteria beyond high density and low metallicity gas

Minimum Lyman Werner flux

Destroy H₂

Maximum gas spin **Toomre instability** threshold

Rich environment At least one neighboring galaxy

See Lewis Prole's talk

Typical sites for DCBH formation

Gas density

Heavy (DCBH) seed

No star formation at the seeding site

Typical sites for DCBH formation

Gas density

Heavy (DCBH) seed

No star formation at the seeding site

Low mass (Pop III or NSC) seed

Active star formation at the seeding site

Merger rates (upper limits) of $\geq 10^3~M_{\odot}$ Bus

Simulations have started adopting more physically motivated seeding prescriptions Seeding based on local gas properties

Horizon-AGN Kaviraj et al 2016

Taylor and Kobayashi+ 2014 **Wang+2019** Bellovary+ 2019

ROMULUS Tremmel+2017

SuperChunky Habouzit+2016

Due to uncertain seeding mechanisms, we need systematic exploration of seed model variations

- - Barausse 2012
	- Ricarte and Natarajan 2018
	- Dayal et al 2018
	- Banik et al 2019
	- Degraf et al 2020
	- Sassano et al 2021
	- Spinoso et al 2022
	- Trinca et al 2022, 23, 24
	- Evans et al 2023

Semi-Analytic models

We are pushing new observational frontiers for high-z black holes, and will continue to do so!

Current JWST observations $\sim 10^6 - 10^8 M_{\odot}$ BHs at z ~ 4 - 11 Future LISA observations $\sim 10^3 - 10^7$ M_{\odot} up to z ~ 15 Crucial time to make theoretical predictions!!

The vast majority of simulations use very simplistic black hole seed models

Minimum halo mass threshold

What were the first "seed" black holes that grew into supermassive black holes?

∼ 102 *M*[⊙] Light seeds

$\sim 10^6 - 10^{10} M_{\odot}$

Zoom simulations predictions are difficult to compare with observations Bhowmick et al 2021, 2022, 2023

How do we model these low mass seeds in large cosmological simulations? Surpassing the resolution limitation

1pc

Having multiple simulation boxes with increasing volumes and decreasing resolution

Smallest volume, highest resolution

Largest volume, lowest resolution

Bhowmick et al 2024

Placing seeds in the smallest volume box

Smallest volume, highest resolution

50 kpc/h

Bhowmick et al 2023

Light seeds
Bhowmick et al 2024 **Following the growth of these low mass seeds along the 'evolution tree' of their host galaxies**

$L = 9$ Mpc

Time

190 $L = 36$ Mpc

Tracing the galaxies wherein these low mass seeds assembled higher mass descendants

$L = 9$ Mpc

Time

Light seeds
Bhowmick et al 2024

$L = 36$ Mpc

Higher mass descendants

Seeding these descendants in the larger volume simulations

Time

 $L = 9$ Mpc

Light seeds
Bhowmick et al 2024 $L = 36$ Mpc

A new "stochastic seed model" to represent low mass seeds in larger cosmological volumes without the need to resolve them

Bhowmick et al 2024a

How do we model heavy DCBH seeds in large cosmological simulations?

Destroy H₂ with ultraviolet radiation

γUV

To model direct collapse black hole formation conditions How to suppress molecular hydrogen cooling in pristine dense gas

DCBH heavy seed formation site

I ensure that seeds are only forming in dense and metal poor gas pockets with sufficient UV radiation

Bhowmick et al 2022a

DCBH heavy seed formation site

I ensure that seeds are only forming in dense and metal poor gas pockets with sufficient UV radiation

Bhowmick et al 2022a

Pop III or NSC seed formation site

BRAHMA simulations: Exploring the impact of black hole seeding in earliest supermassive black hole populations

Data to be made public soon!

Predictions from BRAHMA simulations

Upper limits for LISA event rates

Bhowmick et al 2024

20

 25

 $\sim 10^3~M_{\odot}$ BHs mergers rates: Light seed model predictions **Intermediate-mass black hole populations with LISA** Caveat assumption: For every galaxy merger, there is a black hole merger **My predictions ~200—2000 events per year**

Previous literature

Formed as a heavy seed

Descendant of a low mass seed VS

Bhowmick et al 2024

$\sim 10^5~M_{\odot}$ BH mergers rates : Light vs heavy seed model predictions **Intermediate-mass black hole populations with LISA**

Distinct imprints of light vs heavy seeds in the LISA event rates

Low mass seed models can reproduce the JWST observations Heavy seed models cannot reproduce the JWST observations

Supermassive black hole populations with JWST

Bhowmick et al 2024

Main takeaways from past research

1) Transforms our ability to model the formation of black holes

in cosmological simulations.

- 2) Predicts unique observable signatures of different black hole formation theories within gravitational-wave and electromagnetic
- 3) Lays the foundation for my future research on early black hole

observations from LISA and JWST

evolution

Black hole feedback

Future Research (5 yr horizon): Confront every aspect of the earliest black hole evolution

Black hole accretion

Black hole seeding Black hole dynamics

Step 1: Dynamics of merging black hole seeds

What fraction of seeds can effectively merge and contribute to LISA events? Bhowmick et al (ongoing)

Step 2: Gas accretion onto black hole seeds

10 kpc

~1000 kpc scales Galaxy cluster

Hopkins et al 2023

Accretion disk of a supermassive black hole ~0.01 pc scales

100 kpc 0.01 pc

Step 3: Black hole feedback

$0.846Gyr$ 0.846Gyr Sivasankaran et al 2024

How do black hole seeds interact with earliest galaxies?

Milky-way galaxy simulation

Gas Density MW Gas Temperature 1 kpc

Black hole injecting energy and heating the gas

Future Outlook (5 yr horizon): Confront every aspect of supermassive black hole physics

Black hole seeding \leftarrow Black hole dynamics

Black hole accretion

Black hole feedback

Supermassive and Intermediate mass black hole populations

Physics of dark energy and dark matter

Physics of the baryons

Observed black hole and galaxy populations

Physics of the black holes

Future Outlook (10 yr horizon)

- The missing origins of supermassive black holes is a crucial component for understanding our Universe?
- Using cosmological simulations, I have built the necessary foundation to reveal the missing supermassive blackhole origins from current and future observations?
- My research propels me towards future initiatives and broader questions about black hole evolution, and about the fundamental components of Universe in the longer run.

Conclusions

BACK UP SLIDES

Leveraging the golden age of AI and machine learning

I will confront our entire structure formation paradigm with all available observations

Large suite of cosmological simulations with systematic variations in unknown physics parameters Training and testing data

Deployment data Multi-messenger, multi-epoch and multiwavelength observations of galaxy and black hole populations

Bourne et. al. 2023

Bhowmick et al 2024

Imprint the impact of small scale physics in the modeling of large scale simulations

Future Outlook (5 yr horizon): Confront every aspect of supermassive black hole physics

Observational support for the impact of supermassive black holes in their surrounding larger scale environment

NASA / CXC / University of Bologna / F. Ubertosi / STScl / M. Calzadilla / NSF / NRAO / ALMA

Supermassive black holes may be major players in the evolution of the Universe

To model the impact of dynamical heating, DCBHs are seeded in rich environments with multiple neighboring galaxies

Theories of seed black hole formation

Gas cloud

-
-
-
-
- - - -
			-
		-
-
- -
-
-
-

Jeans' instability: Gravity vs Thermal pressure

Gas cloud

Theories of seed black hole formation

Segments of the cloud will collapse if it exceeds the Jeans' Mass $M_{I} \propto T^{3/2}$

How do the seed black holes form?

Jeans' instability criterion of a segment of gas cloud of mass *M* and temperature *T*. The cloud will collapse if it exceeds the Jeans' Mass $\boxed{M_\text{J} \propto T^{3/2}}$

Ordinary star formation, stellar mass black holes

Low Temperature, 10-30 K Typical gas cloud

Ordinary star formation leading to Stellar mass black holes

Low Temperature, 10-30 K Typical gas cloud

Theories of seed black hole formation

Jeans' instability criterion of a segment of gas cloud of mass *M* and temperature *T*. The cloud will collapse if it exceeds the Jeans' Mass $M_{I} \propto T^{3/2}$

Low Temperature, 10-30 K Typical gas cloud

> Pop III star formation, producing more massive remnants

- Jeans' instability criterion of a segment of gas cloud of mass *M* and temperature *T*. The cloud will collapse if it exceeds the Jeans' Mass $M_{I} \propto T^{3/2}$
	- Pristine gas cloud (no metals) Higher temperatures ~100-1000K

Theories of seed black hole formation

Pop III star formation, producing more massive remnants

Pristine gas cloud (no metals) No molecular hydrogenses Highest temperatures > 10000 K

No Pop III star formation Gas directly collapses to most massive remnants

Pristine gas cloud (no metals) Higher temperatures ~100-1000K

Theories of seed black hole formation

Jeans' instability criterion of a segment of gas cloud of mass *M* and temperature *T*. The cloud will collapse if it exceeds the Jeans' Mass $\boxed{M_{I} \propto T^{3/2}}$

Huge amount of investment to reveal black hole populations across the entire cosmic timeline by the ~2040s

Huge amount of investment to reveal black hole populations across the entire cosmic timeline by the ~2040s

Earliest black hole

Two possible avenues for assembling the z~6 quasars:

GN-z11 (Maiolino+2023) CEERS_1019 (Larsen+2023)

> 15 20° Redshift

Avenue 2: Allowing for Super-Eddington accretion

Avenue 1: If we form higher number of seeds, early growth can be boosted by BH-BH mergers