

Gravitational Wave Background from Extragalactic Double WhiteDwarfs for LISA Cosmological Population Modeling of DWD with COSMIC

Guillaume Boileau, Tristan Bruel, Astrid Lamberts and Nelson Christensen

LISA Astrophysics Working Group Meeting 5-7 November 2024

<u>Context</u>: The Stochastic Gravitational Wave Background (SGWB) for LISA

Stochastic Background : Superposition of a large number of independent sources (unresolved sources):

 $\Omega_{GW}(f) = \frac{1}{\rho_c} \frac{d\rho_{GW}}{d\ln f}$

Galactic and Cosmological SGWB Sources:

- **Galactic SGWB:** Primarily generated by unresolved compact binaries (e.g., double white dwarfs), creating a foreground. Robson *et al* (2019), Boileau *et al* (2021)
- Astrophysical SGWB : Binary Black Holes & Neutron Stars (LIGO/Virgo Band) (Abbott *et al.* (2019, 2021))
- **Cosmological SGWB:** Originates from the early Universe, with a weaker signal often obscured by astrophysical noise Boileau *et al* (2022, 2023).

New source Extra-Galactics DWD :

- First estimated from Farmer and Phinney (2003):
- Recent work on Stealens and Nelemans (2023) and Hofman and Nelemans (2024).

LISA Astrophysics Working

Group Meeting

<u>Method</u>: Overview of Double White Dwarf Population Synthesis

- Key population synthesis properties COSMIC Breivik et al (2020):
 - **Common-Envelope (CE):** Governed by parameters α (energy efficiency) and λ (binding energy).
 - **Default Model Setup:** Uses Kroupa IMF for star masses, binary formation rates, and distributions for orbital separation and eccentricity **(Sana et al).**
 - Covers a range of metallicities for realistic stellar populations (25 values in [1e-04, 0.03] log selection).
- DWD Formation Efficiency:

- **Default Model**: Baseline formation efficiency for solar metallicity.
- Alternative Models:
 - **fb1**: Assumes all stars are binaries, boosting DWD count.
 - Multidim: Uses correlated distributions for initial binary properties. Moe et al (2017)
 - α 4: Increased CE efficiency (α =4) enhances DWD production.
- **GW Frequency Distribution**:
 - Most DWDs fall within the LISA detection band at formation, grouped by WD composition (He, CO, ONe).
 - DWD formation efficiency increases with adjustments in CE efficiency, binary fraction, and multidimensional sampling.

LISA Astrophysics

November 2024

Working Group Meeting

3

<u>Method</u>: Orbital Dynamic Evolution in Double White Dwarf Systems

Frequency Transition Time:

• The time required to evolve between two frequencies $f_1 \to f_2$ is: $\Delta T(f_1, f_2) = \frac{3}{8K} \left(f_1^{-\frac{8}{3}} - f_2^{-\frac{8}{3}} \right)$

Stopping Criterion with Roche Lobe:

• Roche lobe:

$$R_{L2}(q,a) = \frac{a \cdot 0.49q^{2/3}}{0.6q^{2/3} + \log(1+q^{1/3})}$$

• The orbital evolution stops when the Roche lobe boundary is reached, as further dynamical evolution is constrained.

Gravitational Wave Emission from Binary Systems:

• Gravitational wave luminosity for circular orbits:

$$L_{\rm circ}(f_{e,\rm circ}) = \frac{32\pi^{10/3}}{5} \frac{G^{7/3} M_c^{10/3}}{c^5} f_{e,\rm circ}^{10/3}$$

• No eccentricity from COSMIC results, negligible from Farmer et al (2003) conclusion

Guillaume Boile

LISA Astrophysics Working Group Meeting

<u>Method</u>: Computing the Background Energy Density Spectrum for DWD Systems

 (f_r)

 F'_f

Integral Discretization and Bin Setup:

- Redshift z divided into 20 bins over 0 to 8 for a linear progression in lookback time.
- Frequency divided into 17 bins from 0.05 mHz to 70 mHz.

Energy Density Spectrum:
$$\Omega_i(f_r, z) = \frac{f_r F_f}{2}$$

Luminosity Sum and Number Density:

- Total luminosity from sources at redshift horizon:
- Number density of binaries:

$$N_{k,j}(z_i) = \Delta t(k, bin) \operatorname{SFR}(z) \mathcal{P}_k$$

- Final Spectrum Calculations:
- Integrate received flux per frequency bin:

$$f_{1} \to f_{f_{2}} = \sum_{i} \int_{f_{r_{1}}(1+z_{i})}^{f_{r_{2}}(1+z_{i})} \frac{\ell_{f_{e}}}{(1+z_{i})^{2}} \frac{\mathrm{d}f_{e}}{\mathrm{d}f_{r}} \,\mathrm{d}f_{e} \,\Delta\chi(z_{i})$$

 $\ell_{f_e}(T_i) = \sum_{i=1}^{N_{k,j}(z_i)} L_{e,k,j}(f_e)$

Sum specific luminosity density over population synthesis sources.
Total energy density spectrum per metallicity and final spectrum:

$$2_{\rm bin} = \sum_Z \Omega_{\rm perZ}$$

LISA Astrophysics Working Group Meeting 5-7 November 2024

Guillaume Boilea

Results /: Validation and Comparison with Literature

Gravitational Wave Background Analysis:

- Good Amplitude recovery from different hypothesis on binary evolution synthesis and SFR
- Observed Shift: The observed frequency break remains consistent across models; however, discrepancies may arise from inaccuracies in the radii of higg-mass binaries derived from COSMIC.
- Analysis includes:
 - SFR models Strolger et al. (2004), Madau & Dickinson (2014), Madau &
 - Fragos (2017),
 - SFR variation over redshift and metallicity Neijssel *et al* (2019)
 - Metallicity bins from Z = 0.03 to Z=0.0001
 - Redshift range 0≤z≤8

Observations:

- Star Formation Rate : Choice of SFR directly affects binary populations and AGWB predictions.
- Stellar Synthesis Parameters: Different synthesis assumptions in binary evolution can lead to varied AGWB profiles.

LISA Astrophysics Working Group Meeting 5-7 November 2024

<u>Results : Stellar Evolution and Assumptions Impact on DWD</u> Populations in COSMIC

Influence of Redshift Range:

- AGWB mostly shaped by sources with z<2
- High-frequency signals are primarily from sources at z≤0.5 and z≤0.043 (nearby universe).

Stellar Synthesis Models:

- Comparison of different stellar evolution assumptions in COSMIC, focusing on $\alpha 4$ and default models.
- Distribution of frequency vs. redshift shows differences at higher LISA frequencies, due to the rarity of high-frequency DWD mergers..

Population Characteristics:

- **ONeONe Binaries**: Minimal contribution due to rarity
- HeHe Binaries: Slow evolution contributes mostly at lower redshifts.

Model Sensitivity:

- Spectral differences reflect choices in stellar evolution (e.g., common-envelope efficiency α).
- Lower α values reduce the AGWB amplitude but do not shift the frequency break.

LISA Astrophysics

Working Group Meeting 5-7 November 2024

Results : Potential Anisotropies in the AGWB

LISA Astrophysics Working Group Meeting 5-7 November 2024

Cumulative AGWB Contribution by Redshift:

- Analysis based on Mauda and Dickinson (2014) SFR model and *default* model synthesis.
- Redshift range z≈0.043 marks the homogeneous universe limit (200 Mpc); anisotropies are more prominent at low redshifts.

Frequency Dependence:

- High-frequency bins, especially in the range [0.01, 0.1] Hz, contribute more to AGWB anisotropies.
- Signals from closer redshift shells (e.g., NeONeO binaries) introduce slight anisotropies due to their localized origins.

<u>Isotropy vs. Anisotropy:</u>

- Lower frequency sources, found at higher redshifts, create a more isotropic background.
- Minor anisotropies (~7%) are observed but are negligible when considering the isotropic component of the AGWB.

Discussion and Conclusions

Influence of Model Choices:

- **Star Formation Rate :** Choice of SFR directly affects binary AGWB predictions.
- **Termination Criterion**: Using Roche lobe contact as a threshold is conservative. A less strict approach could alter orbital dynamics and shift the frequency break. Toubiana *et al* (2024)
- Stellar Synthesis Parameters: Different synthesis assumptions in binary evolution can lead to varied AGWB profiles.

Measurement and Interpretation:

- **Stochastic vs. Resolved Sources**: AGWB estimation presents challenges in separating stochastic signals from resolved sources. This complicates LISA data interpretation.
- **Population Generation Algorithm**: The selected algorithm impacts the generated population dynamics, influencing AGWB characteristics.

Implications for Future Studies:

- **Simulation Enhancements**: Adding refined AGWB components and exploring varied algorithms (stellar synthesis) could provide more comprehensive insights for LISA simulations.
- Low Anisotropy Impact: Minimal AGWB anisotropy suggests limited utility in mitigating AGWB's influence on other gravitational wave measurements.

Thanks

Guillaume Boileau thanks the Centre national d'études spatiales (CNES) for support for this research.

Guillaume Boileau

10

Back-up Slide : Frequency Break

LISA Astrophysics Working Group Meeting 5-7 November 2024

