CYCLOSTATIONARY PROCESSES IN LISA

Speaker: Federico Pozzoli Co-Authors: R. Buscicchio, A. Klein, V. Korol, A. Sesana, F. Haardt (2410.08274)

LISA AstroWG, Munich 6/11/24

Cosmo: Caprini+24 Auclair+19 Bartolo+19

Astro: Nelemans 09 Babak+23 Pozzoli+23 Hofman+24

SEARCHING BACKGROUND IN LISA -CHALLENGES

NOISE SIGNAL $\Sigma(f, f') = \Sigma_n(f, f') + \Sigma_{GW}(f, f')$

SEARCHING BACKGROUND IN LISA -CHALLENGES

$$\Sigma(f, f') = \Sigma_n(f, f') + \Sigma_{\rm GW}(f, f')$$

- Non-stationarity, Anisotropy, Non-Gaussianity
- Overlapping signals
- Uncertainties in the Models (both Astro&Cosmo)

SEARCHING BACKGROUND IN LISA -CHALLENGES

$$\Sigma(f, f') = \Sigma_n(f, f') + \Sigma_{\rm GW}(f, f')$$

TODAY

- Non-stationarity, Anisotropy, Non-Gaussianity
- Overlapping signals
- Uncertainties in the Models (both Astro&Cosmo)

CYCLOSTATIONARY PROCESSES

Cyclostationary processes are stochastic processes whose statistical properties are periodic in time

$$E[X(t)] = m(t) = m(t+T)$$
$$E[X(t')X(t)] = \Sigma(t',t) = \Sigma(t'+T,t+T)$$

$$B(t,\tau) = \sum_{n=-\infty}^{+\infty} E_n(\tau) e^{2\pi i \frac{nt}{T}} \longrightarrow C(f,f') = \sum_{n=-8}^{n=8} E_n S_h\left(\frac{f'+f}{2}\right) \delta\left(f-f'+\frac{n}{T}\right)$$

CYCLOSTATIONARITY IN LISA

CYCLOSTATIONARITY IN LISA

CYCLOSTATIONARITY IN LISA

Unresolved DWDs in Milky Way Satellite (e.g., LMC, SMC, Sagittarius,...) and in nearby Galaxies (e.g., Andromeda) contribute to a SGWB

LMC

3.5

4.0

$$C(f, f') = \sum_{n=-8}^{n=8} B_n S_h\left(\frac{f'+f}{2}\right) \delta\left(f - f' + \frac{n}{T}\right)$$

$$C(f, f') = \sum_{n=-8}^{n=8} B_n S_h \left(\frac{f'+f}{2} \right) \delta \left(f - f' + \frac{n}{T} \right)$$

Milky Way Foreground

Milky Way Foreground (Karnesis+21)

$$S_h(f) = \frac{A}{2} f^{-7/3} e^{-(f/f_1)^{\alpha_{\rm MW}}} \left(1 + \tanh\left(\frac{f_{\rm knee} - f}{f_2}\right) \right)$$

Satellite Background Integrate Waveform Inspiral over...

$$\begin{split} S_h(f) &= A_{\rm sat} \left(\frac{f}{10^{-3.5} {\rm Hz}} \right)^{\gamma} \\ \gamma &= -(9+3\alpha)/3 \end{split}$$

Chirp mass Orbital Frequency Luminosity distance

MODULATION

We provide an analytical prescription to compute the modulation, relating it to the properties of the distribution!!!

Milky Way Modulation Parameters:

- Center Coordinates of distribution $\lambda, \sin eta$
- Rotation Angle ψ
- Gaussian Variances (Sizes of distribution) σ_1, σ_2

Satellite Modulation Parameters:

- Center Coordinates of distribution $\lambda, \sin \beta$
- Gaussian Variance (Size of distribution) σ

$$C(f, f') = \sum_{n=-8}^{n=8} B_n S_h\left(\frac{f'+f}{2}\right) \delta\left(f - f' + \frac{n}{T}\right)$$

Fourier Coefficient of Modulation

$$C(f, f') = \sum_{n=-8}^{n=8} B_n S_h\left(\frac{f'+f}{2}\right) \delta\left(f - f' + \frac{n}{T}\right)$$

Fourier Coefficient of Modulation

The modulation is **primarily** influenced by **latitude**, while the impact of **size** is a **secondary effect**.

CYCLOSTATIONARY MODEL

Likelihood

$$\log \mathcal{L}(\tilde{d}|\boldsymbol{\theta} = \{\boldsymbol{\theta}_{\mathrm{MW}}, \boldsymbol{\theta}_{\mathrm{sat}}, \boldsymbol{\theta}_{\mathrm{n}}\}) \propto -\sum_{i=A,E} \frac{1}{2} \log(\det [\Sigma_{\mathrm{d}}]_{\mathrm{i}}) + \frac{1}{2} \tilde{\mathrm{d}}_{\mathrm{i}}^{\mathrm{T}} [\Sigma_{\mathrm{d}}]_{\mathrm{i}}^{-1} \tilde{\mathrm{d}}_{\mathrm{i}}$$
$$[\Sigma_{\mathrm{d}}]_{i} = (\Sigma_{\mathrm{MW}}(\boldsymbol{\theta}_{\mathrm{MW}}) + \Sigma_{\mathrm{sat}}(\boldsymbol{\theta}_{\mathrm{sat}}) + \Sigma_{\mathrm{n}}(\boldsymbol{\theta}_{\mathrm{n}}))_{i}$$

Parameter

•
$$\boldsymbol{\theta}_{\text{sat}} = \{ \mathcal{A}_{\text{sat}}, \gamma, \lambda, \sin \beta, \sigma \}$$

•
$$\boldsymbol{\theta}_n = \{\mathcal{P}_{\mathrm{tm}}, \mathcal{P}_{\mathrm{oms}}\}.$$

The detectability of satellite SGWB depends on the interplay between the spectrum and modulation.

RESULTS - Satellite + Noise + MW

RESULTS - Satellite + Noise + MW

RESULTS - Satellite + Noise + MW

Unlike EM radiation, GW are not obscure by gas and dust

Thus, LISA has the potential to observe beyond the galactic plane (Zone of Avoidance)

We consider an LMC-like satellite behind the Milky Way (i.e. same Astrophysical spectrum -> same total mass and distance)

Are we able to observe it?

RESULTS - Hidden Satellite

- We introduce a novel method to address anisotropy from astrophysical SGWB.
- Detection of MW satellite strongly depends on the interplay between the spectrum and modulation.
- We could have access to Zone of Avoidance with LISA behind Milky Way
- Study Milky Way Morphology and structure with DWD foreground

CONCLUSION

BACKUP SLIDES

MODULATION

We have to average the time domain signal in LISA over the probability distribution of the sources in the sky

MODULATION

We have to average the time domain signal in LISA over the probability distribution of the sources in the sky

The problem reduces to resolve integral like

$$\int_{\mathcal{R}} d\theta_r \int_{\mathcal{R}} d\phi_r p\left(\theta_r\right) p\left(\phi_r\right) e^{im\theta_r} e^{in\phi_r} = \varphi_{\theta_r}(m)\varphi_{\phi_r}(n)$$

The solution is well-know for a large set of probability distribution, and it is called **CHARACTERISTIC FUNCTION**

$$\begin{split} S_h(f) &= A_{\rm sat} \left(\frac{f}{10^{-3.5} {\rm Hz}} \right)^{\gamma} \\ \gamma &= -(9+3\alpha)/3 \end{split}$$

Satellite Background

$$S_h(f) = A_{\text{sat}} \left(\frac{f}{10^{-3.5} \text{Hz}}\right)^{\gamma}$$
$$\gamma = -(9 + 3\alpha)/3$$

Satellite Background

$$\begin{split} S_h(f) &= A_{\rm sat} \left(\frac{f}{10^{-3.5} {\rm Hz}} \right)^{\gamma} \\ \gamma &= -(9+3\alpha)/3 \end{split}$$

$$S_h(f) = \int d\mathcal{M}_c p(\mathcal{M}_c) \int df_s p(f_s) \delta(f - f_s) \frac{(G\mathcal{M}_c)^{10/3}}{(c^4 D)^2} (\pi f_s)^{4/3}$$

Primiray Mass m1: Gaussian Mixture based on SDSS spectroscopic observation (Kepler+15) Secondary Mass m2: Flat distribution [0.15 M₀, m1]

RESULTS - Satellite (Realistic) + Noise

LMC from catalog generated with Stellar Population Synthesis code (Korol+24)

We fix the sky position of LMC in the modulation model

WHAT's NEXT

