Cosmic Archaeology with LISA and JWST: seeking the growth of the first black hole seeds

UNIVERSITA' DEGLI STUDI DELL'INSUBRIA

INAF Astronomical Observatory of Rome

Alessandro Trinca

University of Insubria

In collaboration with:

Raffaella Schneider , Rosa Valiante, Roberto Maiolino, Marta Volonteri, Luca Zappacosta, Luca Graziani, Tommaso Zana,...

Finanziato dall'Unione europea NextGenerationEU

LISA Astrophysics Working Group Meeting

Garching, November 7th 2024

The AGN frontier in JWST era

The AGN frontier in JWST era

Supermassive Black Holes in the first billion years

 Wide landscape of potential formation scenarios for early BH seeds, largely unconstrained.

Supermassive Black Holes in the first billion years

- Wide landscape of potential formation scenarios for early BH seeds, largely unconstrained.
- JWST will probe especially the early phases of (efficient) BH growth

Supermassive Black Holes in the first billion years

- Wide landscape of potential formation scenarios for early BH seeds, largely unconstrained.
- JWST will probe especially the early phases of (efficient) BH growth
- Exploiting the synergy with LISA will be crucial to investigate the nature of their first progenitors

Versatile tools are needed to predict simultaneously multiple observables for different scenarios of BH seed formation and growth

Cosmic Archaeology Tool

Trinca+2022

Semi-analytical model tailored to track the early galaxy evolution and investigate the interplay between galaxies and their central MBHs in the first Gyr of cosmic history

CAT

LIGHT SEEDS (from single Pop III stars) 10² - 10³ M_{sun}

HEAVY SEEDS

(Direct collapse of SMS in pristine atomic cooling halos) ~ **10**⁵ M_{sun}

 M_{DM} =10^6 - 10^{14} M_{\odot} z = 24 z = 4

> CAT allows for **population studies** for AGNs and galaxies with a broad statistics exploring different accretion scenarios

BH SEEDING

H₂ cooling efficiency

Reionization

Explore the early Massive Black Hole population

Evolution of the **black hole mass function** in different accretion scenarios:

1) Bondi accretion – Eddington limited

$$\dot{M}_{\rm BHL} = \alpha \frac{4\pi G^2 M_{\rm BH}^2 \rho_{\rm gas}(r_A)}{c_s^3}$$

→ Heavy black hole seeds drive the building up of the high-mass end

Explore the early Massive Black Hole population

Evolution of the **black hole mass function** in different accretion scenarios:

2) Super Eddington growth

Assuming **short burst** of super-Eddington growth **triggered by** host **galaxy major mergers**

 \rightarrow Early growth of smaller BH seeds,

strong contribution to the final BHMF

Extreme BH candidates at z > 7 with JWST

LISA AstroWG 2024 - Garching

detected **up to z ≈ 10**.

early cosmic epochs

An overmassive black hole population

PREDICTED $M_{BH} - M_{STAR} AT z \approx 4 - 7$

JWST AGNs show a **BH-to-stellar mass ratio significantly higher** than the local scaling relation.

An overmassive black hole population

PREDICTED $M_{BH} - M_{STAR} AT z \approx 4 - 7$

JWST AGNs show a **BH-to-stellar mass ratio significantly higher** than the local scaling relation.

Close agreement with the BH population predicted by CAT super-Eddington accretion scenario

→ implications for the BH and galaxy evolutionary histories?

Too many luminous AGNs?

x100 over-abundance of LRDs relative to UVselected bright quasars

Increase in the bright AGN bolometric LF

Light and Sound from the Cosmic Dawn

The synergy between the next generation of EM and GW observatories will unveil the high redshift Universe up to z=20, revealing black holes spanning from tens to millions solar masses

"the sound" hints on dynamical properties of BHs

BHBs Merger Rate predictions with CAT

→ Analytical modeling of the **time delays** associated to different BHB evolutionary phases: **dynamical friction** + **stellar/gas hardening**

BHBs Merger Rates – Accretion scenarios

BHBs Merger Rates – Multiple seeding channels

Alessandro Trinca

Conclusions

- → The potential pathways of formation and early growth characterizing the first black hole seeds are diverse and remain largely unconstrained.
- → The Cosmic Archaeology Tool represents a versatile framework to test various evolutionary scenarios, generating extensive catalogs of AGNs and massive black hole binaries.
- → JWST is already uncovering numerous early AGN candidates, whose peculiar properties hint at efficient early black hole growth through short phases of super-Eddington accretion.
- → However, EM survey will be limited to probe the early MBH growth! Developing tools to predict EM and GW signatures for various formation pathways will be essential to unraveling the contributions of accretion processes versus the fundamental nature of the first BH progenitors.

Thank you!

INAF Astronomical Observatory of Rome

UNIVERSITA' DEGLI ST DELL'INSUBRIA

Alessandro Trinca

In collaboration with:

Raffaella Schneider , Rosa Valiante, Roberto Maiolino, Marta Volonteri, Luca Graziani, Luca Zappacosta, Tommaso Zana

LISA Astrophysics Working Group Meeting

Garching, November 7th 2024