Long-lived non-accretion of massive binaries in truly thin disks

Christopher Tiede | LISA AstroWG 2024

UNIVERSITY OF COPENHAGEN

Binary Accretion

Binary Accretion

Binary Accretion

Physical Picture

Christopher Tiede – Lisa AstroWG

 $\Sigma(r) = \frac{\Sigma_0}{\sqrt{r}} \left(1 - \frac{\dot{J}}{\dot{M}} \sqrt{\frac{1}{r}} \right)$

Christopher Tiede – Lisa AstroWG

 $\Sigma(r) = \frac{\Sigma_0}{\sqrt{r}} \left(1 - \frac{\dot{J}}{\dot{M}} \sqrt{\frac{1}{r}} \right)$

Christopher Tiede – Lisa AstroWG

 $\Sigma(r) = \frac{\Sigma_0}{\sqrt{r}} \left(1 - \frac{\dot{J}}{\dot{M}} \sqrt{\frac{1}{r}} \right)$

 $t_{\rm visc}(r_{\nu}(t)) = t$

 $\dot{M}(t) = \frac{\dot{M}_{\infty}}{1 - \ell_0 / \sqrt{GM r_{\nu}(t)}}$

 $t_{\rm visc}(r_{\nu}(t)) = t$ $\ell_0 \equiv -\dot{J}/\dot{M}$

$$\dot{M}(t) = \frac{\dot{M}_{\infty}}{1 - \ell_0 / \sqrt{GM r_{\nu}(t)}}$$

 $t_{\rm visc}(r_{\nu}(t)) = t$ $\ell_0 \equiv -\dot{J}/\dot{M}$

$$t(\dot{M}) \propto \left(\frac{1 - \dot{M}_{\infty}/\dot{M}}{\ell_0}\right)^{-3}$$

$$\dot{M}(t) = \frac{\dot{M}_{\infty}}{1 - \ell_0 / \sqrt{GM r_{\nu}(t)}}$$

 $t_{\rm visc}(r_{\nu}(t)) = t$ $\ell_0 \equiv -\dot{J}/\dot{M}$

$$t(\dot{M}) \propto \left(\frac{1 - \dot{M}_{\infty}/\dot{M}}{\ell_0}\right)^{-3} \sim \ell_0^3$$

Physical Picture

Tiede et al. (arXiv : 2410.03830)

$$\dot{M}(t) = \frac{\dot{M}_{\infty}}{1 - \ell_0 / \sqrt{GM r_{\nu}(t)}}$$

 $t_{\rm visc}(r_{\nu}(t)) = t$ $\ell_0 \equiv -\dot{J}/\dot{M}$

$$t(\dot{M}) \propto \left(\frac{1 - \dot{M}_{\infty}/\dot{M}}{\ell_0}\right)^{-3} \sim \ell_0^3$$

Physical Picture

Tiede et al. (arXiv : 2410.03830)

$$\mathcal{M}_{2a} \simeq 90 \left(\frac{M}{10^5 \,\mathrm{M_{\odot}}}\right)^{2/15} \times \left(\frac{\alpha}{10^5 \,\mathrm{M_{\odot}}}\right)^{1/10} \left(\frac{f_{\mathrm{Edd}}}{1.0}\right)^{-1/5} \left(\frac{P_b}{1 \,\mathrm{yr}}\right)^{-1/30}$$

Christopher Tiede – Lisa AstroWG

Christopher Tiede – Lisa AstroWG

17

 $\dot{J}_b = -\dot{J} \simeq (\eta \dot{M}_b - \dot{M}_{int}) a^2 \Omega_b$

 $\dot{M}_b = \chi \dot{M}_{int}$ χ : stream efficiency

 $\dot{J}_b = -\dot{J} \simeq (\eta \dot{M}_b - \dot{M}_{int}) a^2 \Omega_b$

 $\dot{M}_b = \chi \dot{M}_{int}$ χ : stream efficiency

 ℓ_0 : "recycyling number"

Tiede et al. (arXiv : 2410.03830)

Tiede et al. (arXiv : 2410.03830)

- Numerical experiment
- Thin binary accretion highly sensitive to inner thermodynamics
- Radiation / Magnetic Fields likely important

Implications

- Efficient orbital decay
- Luminosity suppression of $\mathcal{O}(10^2 10^4)$
- Loss of some variability features
- Post-merger activity

Thanks!

christopher.tiede@nbi.ku.dk

UNIVERSITY OF COPENHAGEN

Steady-States

