Wet Eccentric EMRIs

Francisco Duque

7th November 2024, LISA Astrophysics WG Meeting

Max-Planck-Institut für Gravitationsphysik
ALBERT-EINSTEIN-INSTITUT

Extreme-Mass-Ratio Inspirals (EMRIs)

$$
g_{\mu\nu}^{\text{exact}} = g_{\mu\nu} + \epsilon h_{\mu\nu}^{(1)} + \epsilon^2 h_{\mu\nu}^{(2)} + \mathcal{O}(\epsilon^3) \qquad \epsilon = \mu/M
$$

Derdzinski & Zwick arXiv:2310.16900 (2023) 2

Accretion disk usually boosts the EMRI formation rate per individual MBH by ~10¹ -10³

Pan et al. PRD 104, 063007 (2021)

Quase-Periodic Eruptions = Wet EMRIs (??)

Franchini et al. A&A 675, A100 (2023)

Derdzinski et al. MNRAS 501, 3540 (2021)

Derdzinski et al. MNRAS 501, 3540 (2021)

Beyond-vacuum GR effects compete with 2nd-order SF

Katz et al. PRD 104, 064047 (2021)

Speri et al. PRX 13, 021035 (2023)

Relative velocity of the secondary w.r.t. to the gas flow

$$
\Delta v \approx ev_K = er\Omega_K = er\frac{r}{H}c_s = \frac{e}{h}c_s
$$

 $h \sim 0.02 - 0.1$ in inner disk region

EMRIs are supersonic at moderate eccentricity

$$
t_X = X / \left \langle \dot{X} \right \rangle
$$

\n
$$
t_X = X / \left \langle \dot{X} \right \rangle
$$

\n
$$
t_X = X / \left \langle \dot{X} \right \rangle
$$

\n
$$
t_X = X / \left \langle \dot{X} \right \rangle
$$

\n
$$
t_X = X / \left \langle \dot{X} \right \rangle
$$

\n
$$
t_X = X / \left \langle \dot{X} \right \rangle
$$

\n
$$
t_X = X / \left \langle \dot{X} \right \rangle
$$

\n
$$
t_X = X / \left \langle \dot{X} \right \rangle
$$

\n
$$
t_X = X / \left \langle \dot{X} \right \rangle
$$

\n
$$
t_X = X / \left \langle \dot{X} \right \rangle
$$

\n
$$
t_X = X / \left \langle \dot{X} \right \rangle
$$

\n
$$
t_X = X / \left \langle \dot{X} \right \rangle
$$

\n
$$
t_X = X / \left \langle \dot{X} \right \rangle
$$

\n
$$
t_X = X / \left \langle \dot{X} \right \rangle
$$

\n
$$
t_X = X / \left \langle \dot{X} \right \rangle
$$

\n
$$
t_X = X / \left \langle \dot{X} \right \rangle
$$

\n
$$
t_X = X / \left \langle \dot{X} \right \rangle
$$

\n
$$
t_X = X / \left \langle \dot{X} \right \rangle
$$

\n
$$
t_X = X / \left \langle \dot{X} \right \rangle
$$

\n
$$
t_X = X / \left \langle \dot{X} \right \rangle
$$

\n
$$
t_X = X / \left \langle \dot{X} \right \rangle
$$

\n
$$
t_X = X / \left \langle \dot{X} \right \rangle
$$

\n
$$
t_X = X / \left \langle \dot{X} \right \rangle
$$

\n
$$
t_X = X / \left \langle \dot{X} \right \rangle
$$

\n
$$
t_X = X / \left \langle \dot{X} \right \rangle
$$

\n
$$
t_X = X / \left \langle
$$

hydro-inspired fits that match the asymptotic analytics

For supersonic motion, migration timescale << damping of eccentricity

Since the eccentricity damping may not be as efficient as inclination damping, there might be some eccentricity residual on captured BHs

$$
\dot{a} = \dot{a}_{\rm GW} + \dot{a}_{\rm gas} \qquad \dot{e} = \dot{e}_{\rm GW} + \dot{e}_{\rm gas}
$$

Can constrain accretion rate **and** viscosity **simultaneously Not** possible for **circular** motion w/ migration torques

Inference optimized when there is **transition** from super to subsonic

Multimessenger Wet EMRIs: Improved sirens?

Could assist host galaxy / EM counterpart (QPE) identification

Physics we missed

- 1. Relativistic effects in dynamics + disk structure
- 2. Wake's curvature
- 3. Stochasticity (magnetic fields?)
- 4. Radiative/thermal effects
- 5. Retrograde orbits (eccentricity excitation)

Corrections of $\mathcal{O}(1-10)$?

Formation/Inference of Wet EMRIs is still in quite unexplored

Many questions to explore and understand better but so far*…*

More detailed modelling **Nore** More interesting phenomenology

But unclear how to search for extra physics in the Global Fit

Strong-field + astro + data community **should (***need***) to talk more**

Inner region
$$
\alpha
$$
-disk: $\Sigma(r) = \Sigma_0 \left(\frac{r}{10M}\right)^{3/2}$ $h(r) = h_0 \left(\frac{10M}{r}\right)$

\n $e < h$

\nSubsonic

\n(Global) Migration Torques

\n $\langle \dot{a} \rangle \propto -(\Sigma_0/h_0^2)a^5$

\n $\langle \dot{a} \rangle \propto -(\Sigma_0/h_0^2)a^6$

\n $\langle \dot{e} \rangle \propto -(\Sigma_0/h_0^4)a^6e$

\n $\langle \dot{e} \rangle \propto -(\Sigma_0/h_0^4)a^6e$

\n $\langle \dot{e} \rangle \propto -(\Sigma_0/h_0^4)a^6e$

\n $\langle \dot{e} \rangle \propto -(\Sigma_0/h_0^4)a^6$

\n $\langle \dot{e} \rangle \propto -(\Sigma_0/h_0^4)a^6e$

\n $\langle \dot{e} \rangle \propto -(\Sigma_0/h_0^4)a^6$

\n $\langle \dot{e} \rangle \propto -(\Sigma_0/h_0^4)a^6$

\n $\langle \dot{e} \rangle \propto -(\Sigma_0/h_0^4)a^6$

\n $\langle \dot{e} \rangle \propto -(\Sigma_0/h_0^2)a^3/e^{7/4}$

\n $\langle \dot{e} \rangle \propto (e/h)^2 \gg 1$

For supersonic motion, migration timescale << damping of eccentricity