s u p e r m a s si v e b l a c k h o l e b i n a r i e s a s
m ultimessenger sources: massive black hole binaries as
multimessenger sources:
POPERTIES OF SMRHR

PROPERT IES OF SMBHB ssive black hole binaries as
Itimessenger sources:
PERTIES OF SMBHB
X-RAY SPECTRA

M B H B

R A

TAMARA BOGDANOVIĆ
DAVID BALLANTYNE **FROPERTIES C

X-RAY SPE

SPE

SULLE MALEWICZ

AG UCT CAC ÔN Ô C GAG ÔN ÔG SPAO ÖQUALE

Ede NOJ QUÀ DU ÉT DI QUALENCE DE LA DE DISTINGUALE DE LA DE LA** PROPERTIES OF SMB

X-RAY SPECTRA

UULLE MALEWICZ

CO QUAREWICZ

EE NO QUAREWIC CON CONTRA FROPERTIES OF SMBHB

X–RAY SPECTRA

JULIE MALEWICZ

A LO C CALLEWICZ

A LO CALLEWICZ

CECTRI SO CON OUR DAVID BALLANTYNE

ECTRI SO COLOR OUR DAVID BALLANTYNE

ECTRI SO COLOR UNICI AXIAN

CECTRI SO COLOR DAVID BALLANTYNE

C M B H B
TAMARA BOGDANOVIĆ
DAVID BALLANTYNE
LAURA BRENNEMAN SPECTRA

CEOXICE OX TAMARA BOGDANOVIĆ

AF ŲGEEŌŪGJŌSGF LAURA BRENNEMAN

VÂŅA THOMAS DAUSER STRA

E UX TAMARA BOGDANOVIĆ

DAVID BALLANTYNE

DÔGE LAURA BRENNEMAN

VÂŅÀ THOMAS DAUSER **X – RAY S**
UULIE MALEWICZ
Edfindîgóî de Qouâlou (nûglaval)
Edfindîgóî de Qouâlou (nûglax(âli)
Edfindîgóî de Qouâlou (nûglax(âli)

O B S E R V A T I O N A L
P R O S P E C T S
No conduct a facility study by convolving our model enortra with not

- O B S E R V A T I O N A L

P R O S P E C T S

 We conduct a feasibility study by convolving our model spectrole instrument response • We conduct a feasibility study by convolving our model spectra with next-gen X-ray telescope instrument response
- i.e. we simulate what a telescope would see when looking at our binary

- We then force-fit a single BH reflection model (relxill) and identify where the points of friction are
- i.e. we look for binary signatures!

- TAKEAWAYS

FIGURE 2007 SIMPLE READ TO THE READ OF THE READ OF THE READ OF THE READ SIMPLE READ SIMPLE READ TO THE READ OF THE READ TO THE Bifurcation in accretion and ionization properties in both BHs turn an already highly degenerate parameter space into a few very different spectral morphologies and many different observational outcomes e m a il j l m @ g a t e c h . e d u f o r a n y q u e s t i o n s !
 roperties in both BHs turn an already highly

were different an actual manufacture and manufacture
- Unless the source is close-by $(z\sim 0.1)$, it will be **hard to resolve** anything within the canonical 100 ks exposure time
- . Other complication is the short orbital period: no time-resolved spectra, the result will be smeared and won't appear periodical
- . Some unexpected binary indicators (incl. simple bad fits, low or unconstrained spins due to anomalous iron line, or fit residuals clustered in soft end, etc)

Overall, not a slam-dunk, but clear avenues for further exploration if we are willing to put in the **time** and **effort** (observational campaigns with longer exposure and working with the PTAs to tackle brighter sources)

simulations of MBHB in circumbinary accretion disks by Farris et al. (2014).

$$
\dot{M}_2 = \dot{M}_1 \left(q^{-0.25} e^{-0.1/q} + \frac{50}{(12q)^{3.5} + (12q)^{-3.5}} \right)
$$

NO SPIN $a = 0$

VS.

MAXIMALLY SPINNING $a = 0$. NO SPIN $a = 0$

WS.

MAXIMALLY SPINNING NO SPIN $a = 0$

WARYING

MAXIMALLY SPINNING $a = 0.99$

MAXIMALLY SPINNING $a = 0.99$ VARYING
IONIZATION

VARYING
IIZATION

$\begin{array}{|c|c|c|c|c|}\n\hline\n\textbf{1} & \textbf{2} & \textbf{3} & \textbf{4} & \textbf{5} & \textbf{6} & \textbf{7} & \textbf{8} & \textbf{8} & \textbf{9} & \textbf{10} &$

 (16)

$$
\xi=4\pi m_p \rho^{-1} F_X
$$

$$
\rho = (2.23 \times 10^{-6}) \left(\frac{\eta}{0.1}\right)^2 \left(\frac{\alpha}{0.1}\right)^{-1} \left(\frac{M}{M_{\odot}}\right)^{-1} \lambda^{-2} \left(\frac{r}{r_g}\right)^{3/2} \times R_z^2 R_T R_R^{-3} (1 - f)^{-3} \text{ g} \cdot \text{cm}^{-3}.
$$

In this equation, η is the radiative efficiency of the accretion process, and R_z , R_T , R_R are relativistic corrections to the Newtonian α -disk equations that depend on \overline{a} and \overline{r} . We assume this is the density responsible for X-ray reflection at the disk surface.

The problem is now to determine the total X-ray flux F_X incident on the

surface of the disc at a radius r from a X-ray source radiating at a height h (in units of r_q) above the black hole while including the relativistic focusing effects.

Following Vincent et al. (2016), we define a lamppost X-ray source emitting isotropically in its rest-frame with a spectrum $\nu_{\rm src}^{-\beta}$. The flux normal to the disc surface at some radius r is then

$$
F_{X,\nu_{\rm disc}}(r) = A \,\nu_{\rm disc}^{-\beta} \,\mathcal{F}(r,h) \tag{17}
$$

where \underline{A} is a normalization constant. [...] The measured frequency of a photon striking the disc, $\nu_{\text{disc}}(r)$ is related to its frequency at the source $\nu_{\text{src}}(r)$ in a lamppost geometry by ?:

E M P I R I C A L B O L O M E T R I C C O R R E C T I O N
 F A C T O R F O R X - R A Y F L U X

We found that K_X is fairly constant at $\log(L_{100}/L_{\odot}) < 11$, while it increases

up to about one order of magnitude at **EMPLRICAL BOLOMETRIC CORRECTION**
 FACTOR FOR X-RAY FLUX

we found that K_X is fairly constant at tog (L_{100}/L_{\odot}) $<$ (11, while it increases

we found that K_X is fairly constant at tog (L_{100}/L_{\odot}) $<$ 11, whil **A NALY TICAL FORMULA FOR** $log \theta \leftarrow \mathbf{R} \mathbf{OR}$ **A L BOLOMETRIC CORR**
 ANALY TICAL FORMULA FOR $log \theta \leftarrow \mathbf{OR} \mathbf{OR}$ **and** $log \theta$ **and log IONIZATION**
 EMPLICAL BOLOMETRIC CORRE
 EM

$$
\cdot \cdot
$$

$$
K_X(\lambda_{\rm Edd}) = a \left[1 + \left(\frac{\lambda_{\rm Edd}}{b} \right)^c \right] \tag{29}
$$

with best-fit parameters $a = 7.51 \pm 1.34$, $b = 0.05 \pm 0.03$, $c = 0.61 \pm 0.07$

$$
K_X(M_{\rm BH}) = a \left[1 + \left(\frac{\log \left(M_{\rm BH}/M_\odot \right)}{b} \right)^c \right] \tag{30}
$$

with best-fit parameters $a = 16.75 \pm 0.71$, $b = 9.22 \pm 0.08$, $c = 26.14 \pm 3.73$

Duras et al. (2020)

The function $\mathcal{F}(r,h)$ describes the illumination profile of the disc irradiated by a lamppost source and includes the effects of light-bending and has been computed using ray-tracing simulations by several groups.

$[...]$

The desired equation for the disc ionization parameter at radius r when illuminated by a lamppost corona at height h while including the effects of gravitational light bending:

$$
\xi(r,h) = (5.44 \times 10^{10}) \left(\frac{\eta}{0.1}\right)^2 \left(\frac{\alpha}{0.1}\right)^{-1} \lambda^3 \left(\frac{r}{r_g}\right)^{-3/2} R_z^{-2} R_T^{-1}
$$

$$
\times R_R^3 f(1-f)^3 F(r,h) g_{\rm p}^2 \mathcal{A}^{-1} \text{ erg s cm}^{-1}.
$$
 (19)

 $-$ Ballantyne (2017)