Supermassive black hole binaries on a moving mesh: the crucial role of accretion disc models for multi-messenger predictions

Sophie Koudmani

1851 Royal Commission Fellow, University of Hertfordshire

Bowring Research Fellow, St Catharine's College, Cambridge

with Rachel Somerville, Debora Sijacki, Martin Bourne, Yan-Fei Jiang, Kasar Profit

LISA Astrophysics Working Group Meeting, Nov 6th, 2024

EM Signatures of Massive BH-BH Mergers

EM Signatures of Massive BH-BH Mergers

SMBHs in Galaxy Formation: A Multi-Scale Problem

If we were to simulate SMBH accretion and feedback ab-initio...

... we would need to span (at least) 14 orders of magnitude!

Image credits: Event Horizon Telescope, Koudmani+,19,21,24

Accretion disc particle method

also see Power+11, Dubois+14,21, Fiacconi+18, Bustamante+19, Cenci+21, Talbot+21,22, Husko+22,23, Massonneau+22, Tarténas & Zubovas 22, Partmann+24 ...

- Mass and angular momentum inflows at outer accretion disc directly from the hydro solver
- BH mass/spin evolution with the subgrid model \rightarrow usually Shakura Sunyaev thin α -disc

Radiatively-inefficient accretion

At low accretion rates the thin disc transitions to a **hot advection-dominated accretion flow** (ADAF, Narayan & Yi 1995) → viscous heating balanced by energy advection rather than cooling

→ Positive Bernoulli parameter hints at strong outflows in ADAF regime (ADIOS model, Blandford & Begelman 1999)

Unified accretion disc particle method

Nov 6, 2024 Sophie Koudmani · LISA Astrophysics Working Group Meeting · SMBH Binaries on a Moving Mesh

6

First Application: Idealised SMBH Binaries

Wide binary phase in reach of next-generation radio facilities

(already some VLBI detections,

see Rodriguez et al. 2006; Bansal et al. 2017; Kharb et al. 2017)

Burke-Spolaor et al., 2018

Application to SMBH Binaries

AEI/MM/exozet

Binary set-up from Bourne et al., 2024 (inc. SK):

- Moving mesh code AREPO (Springel, 2010)
- Binary parameters: O M_{bin}= 2x10⁶ M_{sun} O T_{bin} = 0.187 Myr O a_{bin} = 2pc, gaseous CBD
 - from $2a_{bin} \rightarrow 7a_{bin}$

Koudmani+24

- bin_q1i0: equal-mass, aligned binaries → steady external accretion from mini discs
- **bin_q3i45**: unequal-mass (q=3), misaligned binaries → 'chaotic' external accretion from mini discs

Nov 6, 2024

Sophie Koudmani \cdot LISA Astrophysics Working Group Meeting \cdot SMBH Binaries on a Moving Mesh

Nov 6, 2024

Sophie Koudmani \cdot LISA Astrophysics Working Group Meeting \cdot SMBH Binaries on a Moving Mesh

Disc-state-dependent Lense Thirring Precession

Ingram & Motta 19

10

Misaligned thin discs are realigned by Bardeen Petterson effect

Inner hot flow may precess as solid body OR be twisted into alignment by outer thin disc

Spin Evolution and Precession

→ Significant external angular momentum inflows so that J_{tot} = J_{BH} + J_d evolves towards mini disc angular momentum

→ Decreasing disc precession angle

Primary and secondary BH cover large solid angle in unified model

Nov 6, 2024

Sophie Koudmani \cdot LISA Astrophysics Working Group Meeting \cdot SMBH Binaries on a Moving Mesh

Conclusions & Outlook

- Developed novel unified accretion disc model for massive BHs in galaxy formation simulations based both on analytical descriptions of the ADIOS models and GR(-R-)MHD simulations of radiatively inefficient accretion
- Predictions for electromagnetic signatures of massive black hole binaries are hugely sensitive to the assumed disc state, and it is imperative to simulate this self-consistently
- With future gravitational-wave observatories, such as IPTA and LISA, also crucial to make predictions for likely spin magnitude and orientation of merging SMBHs
- **Outlook:** Combine with AGN feedback prescriptions, test this model in galaxy merger and cosmological zoom-in simulations, coarse-grained version for large cosmological volumes

12

Accretion disc particle method

DISC MASS M_d AND BH MASS M_{BH} EVOLUTION: $\frac{\mathrm{d}M_{\mathrm{d}}}{\mathrm{d}t} = -\dot{M} + \dot{M}_{\mathrm{in}}$ $\frac{\mathrm{d}M_{\mathrm{BH}}}{\mathrm{d}t} = (1 - \eta) \,\dot{M}_{\mathrm{BH,0}}$ DISC ANG. MOMENTUM J_d AND BH SPIN J_{BH} EVOLUTION: $\frac{\mathrm{d}\mathbf{J}_{\mathrm{d}}}{\mathrm{d}t} = -\dot{M} \, \underline{L}_{\mathrm{ISCO}} \, \mathrm{sign}(\mathbf{j}_{\mathrm{BH}} \cdot \mathbf{j}_{\mathrm{d}}) \, \mathbf{j}_{\mathrm{BH}} - \frac{\mathrm{d}\mathbf{J}_{\mathrm{BH}}}{\mathrm{d}t} \Big|_{\mathrm{IT}} + \mathbf{j}_{\mathrm{in}}$ $\frac{\mathrm{d}\mathbf{J}_{\mathrm{BH}}}{\mathrm{d}t} = \dot{M}_{\mathrm{BH,0}} \, \boldsymbol{L}_{\mathrm{ISCO}} \, \mathrm{sign}(\mathbf{j}_{\mathrm{BH}} \cdot \mathbf{j}_{\mathrm{d}}) \, \mathbf{j}_{\mathrm{BH}} + \frac{\mathrm{d}\mathbf{J}_{\mathrm{BH}}}{\mathrm{d}t}$

For truncated / pure ADIOS disc states:

- Fluxes from hydro solver, mass flow rates & Lense Thirring torques from analytical theory
- Energy and angular momentum transfer from GR(R)MHD simulations

Accretion disc particle method: angular momentum

DISC ANG. MOMENTUM J_d **AND BH SPIN** J_{BH} **EVOLUTION:** $\frac{dJ_d}{dt} = -\dot{M} L_{ISCO} \operatorname{sign}(\mathbf{j}_{BH} \cdot \mathbf{j}_d) \mathbf{j}_{BH} - \frac{dJ_{BH}}{dt} \Big|_{LT} + \dot{\mathbf{j}}_{in}$ $= -\operatorname{accretion} \mathbf{x} \operatorname{specific} \operatorname{angular} \operatorname{momentum} \operatorname{at} \operatorname{ISCO} - \operatorname{mutual} \operatorname{Lense} \operatorname{Thirring} \operatorname{torque} + \operatorname{inflow} \operatorname{from} \operatorname{environment}$ $\frac{dJ_{BH}}{dt} = \dot{M}_{BH,0} L_{ISCO} \operatorname{sign}(\mathbf{j}_{BH} \cdot \mathbf{j}_d) \mathbf{j}_{BH} + \frac{dJ_{BH}}{dt} \Big|_{LT}$ $= \operatorname{accretion} \mathbf{x} \operatorname{specific} \operatorname{angular} \operatorname{momentum} \operatorname{at} \operatorname{ISCO} + \operatorname{mutual} \operatorname{Lense} \operatorname{Thirring} \operatorname{torque}$

The Shakura Sunyaev **thin α-disc model** offers a **global analytical solution for disc properties:**

- Take fluxes from hydro solver
- Infer BH/disc evolution from thin disc analytical theory

How to determine the accretion disc state?

and 'quasar mode' via truncated disc state

Relatively low gas inflows from mini discs would lead to truncated discs within our unified framework

Luminosity is **dominated** by inner hot flow in truncated regime

Koudmani+24

20