Supermassive black hole binaries on a moving mesh: the crucial role of accretion disc models for multi-messenger predictions

Sophie Koudmani

1851 Royal Commission Fellow, University of Hertfordshire

Bowring Research Fellow, St Catharine's College, Cambridge

with Rachel Somerville, Debora Sijacki, Martin Bourne, Yan-Fei Jiang, Kasar Profit

LISA Astrophysics Working Group Meeting, Nov 6th, 2024

EM Signatures of Massive BH-BH Mergers

EM Signatures of Massive BH-BH Mergers

SMBHs in Galaxy Formation: A Multi-Scale Problem

If we were to simulate SMBH accretion and feedback ab-initio…

… we would need to span (at least) 14 orders of magnitude!

Image credits: Event Horizon Telescope, Koudmani+,19,21,24

Accretion disc particle method

also see Power+11, Dubois+14,21, Fiacconi+18, Bustamante+19, Cenci+21, Talbot+21,22, Husko+22,23, Massonneau+22, Tartėnas & Zubovas 22, Partmann+24 …

- **Mass and angular momentum inflows at outer accretion disc** directly from the **hydro solver**
- **BH mass/spin evolution** with the **subgrid model** → **usually Shakura Sunyaev thin** ⍺**-disc**

Radiatively-inefficient accretion

At low accretion rates the thin disc transitions to a **hot advection-dominated accretion flow** (ADAF, Narayan & Yi 1995) \rightarrow viscous heating balanced by energy advection rather than cooling

→ Positive Bernoulli parameter hints at **strong outflows** in ADAF regime (**ADIOS model**, Blandford & Begelman 1999)

Unified accretion disc particle method

First Application: Idealised SMBH Binaries

Wide binary phase in reach of next-generation radio facilities

(already some VLBI detections,

see Rodriguez et al. 2006; Bansal et al. 2017; Kharb et al. 2017)

Burke-Spolaor et al., 2018

Application to SMBH Binaries

AEI/MM/exozet

Binary set-up from Bourne et al., 2024 (inc. SK):

- Moving mesh code AREPO (Springel, 2010)
- Binary parameters: \circ M_{bin}= 2x10⁶ M_{sun} \circ T_{bin} = 0.187 Myr \circ a_{bin} = 2pc, gaseous CBD
	- from $2a_{\text{bin}} \rightarrow 7a_{\text{bin}}$

Koudmani+24

- **bin q1i0:** equal-mass, aligned binaries → **steady external accretion** from mini discs
- **bin_q3i45**: unequal-mass (q=3), misaligned binaries → 'chaotic' external accretion from mini discs

Disc-state-dependent Lense Thirring Precession

Liska+21 Ingram & Motta 19

Misaligned thin discs are realigned by **Bardeen Petterson effect**

Inner hot flow may **precess as solid body OR be twisted into alignment** by outer thin disc

Spin Evolution and Precession

→**Significant external angular momentum** inflows so that $J_{\text{tot}} = J_{\text{BH}} +$ J_d evolves towards mini disc angular momentum

- →**Decreasing disc precession** angle
- \rightarrow Primary and secondary BH cover **large solid**

EX Conclusions & Outlook

- Developed **novel unified accretion disc model for massive BHs in galaxy formation simulations** based both on analytical descriptions of the ADIOS models and GR(-R-)MHD simulations of radiatively inefficient accretion
- **Predictions for electromagnetic signatures of massive black hole binaries are hugely sensitive to the assumed disc state**, and it is imperative to simulate this self-consistently
- With future gravitational-wave observatories, such as IPTA and LISA, also crucial to **make predictions for likely spin magnitude and orientation of merging SMBHs**
- **Outlook:** Combine with AGN feedback prescriptions, test this model in galaxy merger and cosmological zoom-in simulations, coarse-grained version for large cosmological volumes

Accretion disc particle method

dM_d dt $= -\dot{M} + \dot{M}_{\rm in}$ dJ_d dJ_{BH} **DISC MASS** M_d **AND BH MASS** M_{BH} **EVOLUTION: DISC ANG. MOMENTUM** *J***_d AND BH SPIN** *J***_{RH} EVOLUTION:** dM_{BH} dt $= (1 - \eta) \dot{M}_{\rm BH,0}$

For truncated / pure ADIOS disc states:

- Fluxes from **hydro solver**, mass flow rates & Lense Thirring torques from **analytical theory**
- Energy and angular momentum transfer from **GR(R)MHD simulations**

Accretion disc particle method: angular momentum

= – accretion x specific angular momentum at ISCO – mutual Lense Thirring torque + inflow from environment = accretion x specific angular momentum at ISCO + mutual Lense Thirring torque Self consistently **track the black hole spin** and its orientation! dJ_{BH} dt $= \dot{M}_{\text{BH,0}} L_{\text{ISCO}}$ sign(j_{BH} \cdot j_d) j_{BH} $+ \frac{\omega_{\text{BH}}}{dt}$ dJ_{BH} dt LT dJ_d dt $= -\dot{M} L_{ISCO}$ sign($\mathbf{j}_{BH} \cdot \mathbf{j}_{d}$) $\mathbf{j}_{BH} - \frac{\mathbf{d} \mathbf{j}_{BH}}{dt}$ dJ_{BH} dt LT $+$ \mathbf{j}_{in} **DISC ANG. MOMENTUM** J_d **AND BH SPIN** J_{BH} **EVOLUTION:**

The Shakura Sunyaev **thin α-disc model** offers a **global analytical solution for disc properties:**

- Take fluxes from **hydro solver**
- Infer BH/disc evolution from **thin disc analytical theory**

How to determine the accretion disc state?

Relatively low gas inflows from mini discs would lead to truncated discs within our unified framework

Luminosity is **dominated by inner hot flow** in truncated regime

Koudmani+24