LISA MBHCatalogs

A large collaborative project with a large dataset of massive black hole binaries

November, Garching 2024

Astrophysics with the Laser Interferometer Space Antenna *Living Review, 2023*

Theoretical predictions on the merger rates of MBHs span several orders of magnitude, across a large range of redshifts. From <1 to 100s yr-1.

Astrophysics with the Laser Interferometer Space Antenna *Living Review, 2023*

Theoretical predictions on the merger rates of MBHs span several orders of magnitude, across a large range of redshifts. From <1 to 100s yr-1.

This is good news, **IF** we can i) understand the global astrophysics uncertainties and ii) identify the robust model-independent predictions.

Astrophysics with the Laser Interferometer Space Antenna *Living Review, 2023*

Astrophysics with the Laser Interferometer Space Antenna Living Review, 2023

Semi-analytical models

10

12

14

Astrophysics with the Laser Interferometer Space Antenna *Living Review, 2023*

Cosmological simulations __NewHorizon Eagle Horizon-AGN Illustris no postprocessed delays Resolvina dN(>z)/dt [yr⁻¹] Mstar < 1e9 Msun 10 Mstar > 1e9 Msu 0.1 postprocessed delays with dN(>z)/dt [yr⁻¹] 10 0.1 2 6 8 0 redshift

 Simulations which do not resolve galaxies with M_{star} < 10⁹ M_{sun} can under estimate MBH merger rates (if MBHs exist in these galaxies).

 Decrease of MBH merger rates when accounting for post-processing delays.

Astrophysics with the Laser Interferometer Space Antenna *Living Review, 2023*

Results suggest that different seeding models would impact LISA event rate differently.

<u>Light seeds</u>: 10 to 100s detections in 4 year mission duration.

<u>Heavy seeds</u>: less detections because rare.

- Event rate mostly driven by mergers of growing light seeds?
- Role of SN feedback?

Semi-analytical models

Project	Exhaustive comparison of 20 existing models predicting MBH merger rates and LISA event rates.
rioject	Models span different techniques, resolution, physical assumptions on MBH seeding, growth, dynamics, galaxy formation models.

Project	Exhaustive comparison of 20 existing models predicting MBH merger rates and LISA event rates.	
	Models span different techniques, resolution, physical assumptions on MBH seeding, growth, dynamics, galaxy formation models.	

Semi-analytical models

Cosmological simulations

Project	Exhaustive comparison of 20 existing models predicting MBH merger rates and LISA event rates. Models span different techniques, resolution, physical assumptions on MBH seeding, growth, dynamics, galaxy formation models.	
Goals	 i) Evaluating the global astrophysical uncertainties on the LISA event rate. ii) Identifying robust model-independent predictions. 	

Project	Exhaustive comparison of 20 existing models predicting MBH merger rates and LISA event rates. Models span different techniques, resolution, physical assumptions on MBH seeding, growth, dynamics, galaxy formation models.
Goals	 i) Evaluating the global astrophysical uncertainties on the LISA event rate. ii) Identifying robust model-independent predictions.
In practice	 About 100 participants with diverse expertise / skills and at different stages of career. 7 coordinators. Project divided in many tasks. Each participant expected to complete several tasks. Close monitoring of who is doing what.

Project	Exhaustive comparison of 20 existing m and LISA event rates. Models span different techniques, resolu growth, dynamics, galaxy formation mod	nodels predicting MBH merger rates tion, physical assumptions on MBH seeding, els.	
Goals	i) Evaluating the global astrophysical une ii) Identifying robust model-independent	certainties on the LISA event rate. predictions.	
In practice	 Creating uniform templates & codes to produce the catalogs. 	 Creating analysing pipeline & interpreting results 	

• Making catalogs

• Writing the paper

Separations of the binaries at the last time step before numerical coalescence

Large-scale cosmological simulations with resolution ~ 1 kpc

A landscape of models CAT ---- Renaissance 10^{0} 10^{-1} $\stackrel{L}{N}_{N}_{10^{-2}}$ The more flexible SAMs allow to explore smaller

A few high-resolution simulations.

Large-scale cosmological simulations with resolution $\sim 1 \text{ kpc}$

L-Galaxies

DELPHI

BACH

 10^{4}

Convergence on the massive end,

large discrepancies at the low-mass end (seeding, accretion)

MBH-stellar mass relation of the entire MBH population produced in the models

Convergence on the massive end,

large discrepancies at the low-mass end (seeding, accretion, SN feedback)

MBH merger rates predicted by the 20 models

$$\frac{\mathrm{d}N}{\mathrm{d}t\,\mathrm{d}z} = \frac{\mathrm{d}n}{\mathrm{d}z} \times 4\pi c \left(\frac{d_L}{1+z}\right)^2$$

MBH merger rates predicted by the 20 models

$$\frac{\mathrm{d}N}{\mathrm{d}t\,\mathrm{d}z} = \frac{\mathrm{d}n}{\mathrm{d}z} \times 4\pi c \left(\frac{d_L}{1+z}\right)^2$$

Adding post-processing **dynamical friction delays** that are not captured by the models:

$$T_{\rm dyn}^{\rm BH} = 19 \left(\frac{r_0}{5 \rm kpc}\right)^2 \left(\frac{\sigma}{200 \rm \ km/s}\right) \left(\frac{10^8 \rm M_{\odot}}{\rm M_{BH}}\right) \frac{1}{\Lambda} [\rm Gyr]$$

Mass ratios of the binaries

- Large distributions for most of the models.
- Discrepancies across models largely due to seeding and fraction of ungrown MBHs.
- Reduced discrepancies when accounting for DF delays.
- Models converge for mergers of massive MBHs.

Comparing our DF delay modeling to existing delays in some models.

The main differences are seen at high redshift.

LISA detection rate (Signal-to-noise ratios)

Input: Sampling of N binaries from each model (for given M_{primary}, M_{secondary}, redshifts). SNR averaged over location on the sky, inclination, polarisation.

LISA detection rate (Signal-to-noise ratios)

Input: Sampling of N binaries from each model (for given M_{primary}, M_{secondary}, redshifts). SNR averaged over location on the sky, inclination, polarisation.

 $\mathrm{SNR}^2 = \int_{f_{\mathrm{min}}}^{f_{\mathrm{max}}} \frac{h_c^2}{f^2 S_n(f)} df_{\mathrm{max}}$ SHARK EAGLE -Galaxies Astrid DELPHI BACH Horizon-AGN NewHorizon CAT Obelisk 0 $dN/dlog_{10}(SNR)$ -1-2-3Ketju TNG300 TNG50 3 TNG100 Illustris100 Romulus25 $\mathbf{2}$ 0 Large SNR. -1LISA will detect a large fraction -2of the mergers predicted by the -3models. $^{-1}$ $\mathbf{2}$ 3 $\mathbf{2}$ 3 0 5 0 4 5 (Keeping in mind unresolved low-mass $\log_{10}(SNR)$ galaxies and BHs in some models)

LISA detection rate (Signal-to-noise ratios)

Input: Sampling of N binaries from each model (for given M_{primary}, M_{secondary}, redshifts). SNR averaged over location on the sky, inclination, polarisation.

Our conclusions

i) Understand global astrophysics uncertainties

- MBH merger rate, event rate, MBHB mass ratios, strongly shaped by MBH formation modeling.
- Assembly of low-mass galaxies (and their MBHs) not captured by many models.
- Parameters in Dynamical Friction delay modeling.

ii) Identify the robust model-independent predictions

- Larger discrepancies across models occurs in the LISA mass band.
- Expected mergers with low mass ratios while not accounting for DF delays; reduced to ~0.1 with delays.
- Discrepancies more nuanced at the massive end, due to models being more anchored to existing observational constraints and signatures of seeding being washed out.

We did not tackle interesting aspects:

- The galactic and large-scale environments fostering MBH mergers (e.g., galaxy morphologies?, filaments or clusters?) and evolution with redshift.
- EM counterparts of the systems from dual AGN stage to coalescence.

Our conclusions

i) Understand global astrophysics uncertainties

- MBH merger rate, event rate, MBHB mass ratios, strongly shaped by MBH formation modeling.
- Assembly of low-mass galaxies (and their MBHs) not captured by many models.
- Parameters in Dynamical Friction delay modeling.

ii) Identify the robust model-independent predictions

- Larger discrepancies across models occurs in the LISA mass band.
- Expected mergers with low mass ratios while not accounting for DF delays; reduced to ~0.1 with delays.
- Discrepancies more nuanced at the massive end, due to models being more anchored to existing observational constraints and signatures of seeding being washed out.

Community value

- 1. Evaluation of the global astrophysical uncertainties on the LISA event rate.
- 2. Provide simulated catalogs to test pipelines.
- 3. Provide simulated catalogs to validate LISA catalogs.