LISA MBHCatalogs

A large collaborative project with a large dataset of massive black hole binaries

November, Garching 2024

Astrophysics with the Laser Interferometer Space Antenna *Living Review, 2023*

> Theoretical predictions on the merger rates of MBHs span several orders of magnitude, across a large range of redshifts. From <1 to 100s yr-1.

Astrophysics with the Laser Interferometer Space Antenna *Living Review, 2023*

> Theoretical predictions on the merger rates of MBHs span several orders of magnitude, across a large range of redshifts. From <1 to 100s yr-1.

This is good news, **IF** we can i) understand the global astrophysics uncertainties and ii) identify the robust model-independent predictions.

Astrophysics with the Laser Interferometer Space Antenna *Living Review, 2023*

Astrophysics with the Laser Interferometer Space Antenna *Living Review, 2023*

Astrophysics with the Laser Interferometer Space Antenna *Living Review, 2023*

Cosmological simulations _NewHorizon Romulus **Horizon-AGN** _ Eagle ...Illustris no postprocessed delays **Resolving** $dN(>z)/dt$ [yr^{-1]} Mstar < 1e9 Msun 10 $Mstar > 1e9$ Msl 0.1 postprocessed delays with $dN(>z)/dt$ [yr⁻¹] 10 0.1 Ω \overline{c} 6 \mathbf{a}

redshift

 \geq Simulations which do not resolve galaxies with M_{star} < 10⁹ M_{sun} can under estimate MBH merger rates (if MBHs exist in these galaxies).

 \geq Decrease of MBH merger rates when accounting for post-processing delays.

Astrophysics with the Laser Interferometer Space Antenna *Living Review, 2023*

 \triangleright Results suggest that different seeding models would impact LISA event rate differently.

> Light seeds: 10 to 100s detections in 4 year mission duration. Heavy seeds: less detections because rare.

- \triangleright Event rate mostly driven by mergers of growing light seeds?
- \triangleright Role of SN feedback?

Semi-analytical models

Semi-analytical models Cosmological simulations

In practice

- Creating uniform templates & codes to produce the catalogs.
	- Making catalogs
- Creating analysing pipeline & interpreting results
- Writing the paper

Separations of the binaries at the last time step before numerical coalescence

Large-scale cosmological simulations with resolution \sim 1 kpc

A landscape of models CAT $-$ Renaissance - L-Galaxies DELPHI BACH $10⁰$ $\sqrt{10^{-1}}$ $\sum_{10^{-2}}^{10}$ The more flexible SAMs allow to explore smaller binary separation. 10^{-3} A few high-resolution simulations. 10^{-4} **TNG100** -
Ketju Astrid - Horizon-AGN TNG50 **FLARES** Simba NewHorizon \longrightarrow EAGLE Illustris100 $10⁶$ **TNG300** $Romulus25$ 10^{-1} $\sum_{10^{-2}}^{1}$ Large-scale 10^{-3} cosmological simulations with resolution \sim 1 kpc 10^{-4}

 10^{-6}

 10^{-4}

 10^{-2}

 $r_0[kpc]$

 10^{0}

 $10²$

 10^{4}

A landscape of models
Mass function of the

Convergence on the massive end,

large discrepancies at the low-mass end (seeding, accretion)

A landscape of models
MBH-stellar mass relation of

the entire MBH population produced in the models

Convergence on the massive end,

large discrepancies at the low-mass end (seeding, accretion, SN feedback)

MBH merger rates predicted by the 20 models

$$
\frac{\mathrm{d}N}{\mathrm{d}t\,\mathrm{d}z} = \frac{\mathrm{d}n}{\mathrm{d}z} \times 4\pi c \left(\frac{d_L}{1+z}\right)^2
$$

MBH merger rates predicted by the 20 models

$$
\frac{\mathrm{d}N}{\mathrm{d}t\,\mathrm{d}z} = \frac{\mathrm{d}n}{\mathrm{d}z} \times 4\pi c \left(\frac{d_L}{1+z}\right)^2
$$

Adding post-processing **dynamical friction delays** that are not captured by the models:

$$
T_{\rm dyn}^{\rm BH} = 19 \left(\frac{r_0}{5 \rm kpc}\right)^2 \left(\frac{\sigma}{200 \rm \ km/s}\right) \left(\frac{10^8 \rm M_{\odot}}{M_{\rm BH}}\right) \frac{1}{\Lambda} \rm [Gyr]
$$

Mass ratios of the binaries

- Large distributions for most of the models.
- Discrepancies across models largely due to seeding and fraction of ungrown MBHs.
- Reduced discrepancies when accounting for DF delays.
- Models converge for mergers of massive MBHs.

Comparing our DF delay modeling to existing delays in some models.

The main differences are seen at high redshift.

LISA detection rate (Signal-to-noise ratios)

Input: Sampling of N binaries from each model (for given M_{primary}, Msecondary, redshifts).

LISA detection rate (Signal-to-noise ratios)

Input: Sampling of N binaries from each model (for given M_{primary}, M_{secondary}, redshifts). SNR averaged over location on the sky, inclination, polarisation.

 $SNR^{2} = \int_{f_{\min}}^{f_{\max}} \frac{h_{c}^{2}}{f^{2}S_{n}(f)} df.$ -Galaxies **SHARK** EAGLE $_{\rm 4strid}$ **BACH** DELPH Horizon-AGN NewHorizon CAT Obelisk Ω $\mathrm{dN}/\mathrm{dlog_{10}(SNR)}$ -1 -2 -3 $TNG300$ TNG50 Ketju Renaissance 3 **TNG100** Illustris100 Romulus25 $\overline{2}$ Ω Large SNR. -1 LISA will detect a large fraction -2 of the mergers predicted by the -3 models. -1 $\mathbf{2}$ 3 $\overline{2}$ 3 $\overline{0}$ 5 $\boldsymbol{0}$ 4 5 (Keeping in mind unresolved low-mass $log_{10}(SNR)$ galaxies and BHs in some models)

LISA detection rate (Signal-to-noise ratios)

Input: Sampling of N binaries from each model (for given M_{primary}, Msecondary, redshifts). SNR averaged over location on the sky, inclination, polarisation.

Our conclusions

- MBH merger rate, event rate, MBHB mass ratios, strongly shaped by MBH formation modeling.
- Assembly of low-mass galaxies (and their MBHs) not captured by many models.
- Parameters in Dynamical Friction delay modeling.

i) Understand global astrophysics uncertainties $\|\cdot\|$ ii) Identify the robust model-independent predictions

- Larger discrepancies across models occurs in the LISA mass band.
- Expected mergers with low mass ratios while not accounting for DF delays; reduced to ~0.1 with delays.
- Discrepancies more nuanced at the massive end, due to models being more anchored to existing observational constraints and signatures of seeding being washed out.

We did not tackle interesting aspects:

- The galactic and large-scale environments fostering MBH mergers (e.g., galaxy morphologies?, filaments or clusters?) and evolution with redshift.
- EM counterparts of the systems from dual AGN stage to coalescence.

Our conclusions

- MBH merger rate, event rate, MBHB mass ratios, strongly shaped by MBH formation modeling.
- Assembly of low-mass galaxies (and their MBHs) not captured by many models.
- Parameters in Dynamical Friction delay modeling.

i) Understand global astrophysics uncertainties $\|\cdot\|$ ii) Identify the robust model-independent predictions

- Larger discrepancies across models occurs in the LISA mass band.
- Expected mergers with low mass ratios while not accounting for DF delays; reduced to ~0.1 with delays.
- Discrepancies more nuanced at the massive end, due to models being more anchored to existing observational constraints and signatures of seeding being washed out.

Community value

- 1. Evaluation of the global astrophysical uncertainties on the LISA event rate.
- 2. Provide simulated catalogs to test pipelines.
- 3. Provide simulated catalogs to validate LISA catalogs.