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Theoretical predictions on the merger rates of
MBHs span several orders of magnitude,
across a large range of redshifts.

From <1 to 100s yr-1.
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Astrophysics with the Laser Interferometer Space Antenna
Living Review, 2023

Theoretical predictions on the merger rates of
MBHSs span several orders of magnitude,
across a large range of redshifts.

From <1 to 100s yr-1.

This is good news,

IF we can i) understand the global
astrophysics uncertainties and ii)
identify the robust model-independent
predictions.
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How it started..

Astrophysics with the Laser Interferometer Space Antenna
Living Review, 2023

Cosmological simulations
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How it started..

Cosmological simulations
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How it started..

> Results suggest that different seeding models
would impact LISA event rate differently.

Light seeds: 10 to 100s detections in 4 year
mission duration.
Heavy seeds: less detections because rare.

> Event rate mostly driven by mergers of growing
light seeds?

> Role of SN feedback?

dN(>z)/dt [yr-!]

dN(>z)/dt [yr-t]

e
N

Semi-analytical models

—B+20 noSN—-nodelays

0.1

0.01 -+t

102

—
-t o
T T

—B+20 noSN-delays
—B+20 SN—nodelays

—D+19

102 E

10 £

__HeavySeeds

MR A

|1|1|

vod vl 3

vl vyl

0.01 Lo
0

I il
I nghtSeeés

vl v vl vl vl e

Ciil

redshift




Project overview

( Exhaustive comparison of 20 existing models predicting MBH merger rates
and LISA event rates.

~

Project
Models span different techniques, resolution, physical assumptions on MBH seeding,
growth, dynamics, galaxy formation models. J
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Project overview
~

( Exhaustive comparison of 20 existing models predicting MBH merger rates
and LISA event rates.
Project
Models span different techniques, resolution, physical assumptions on MBH seeding,
\ growth, dynamics, galaxy formation models. J

i) Evaluating the global astrophysical uncertainties on the LISA event rate.

Goals
ii) ldentifying robust model-independent predictions.



Project overview
-

~

Exhaustive comparison of 20 existing models predicting MBH merger rates
and LISA event rates.

Project
Models span different techniques, resolution, physical assumptions on MBH seeding,
growth, dynamics, galaxy formation models.

& J

Goals i) Evaluating the global astrophysical uncertainties on the LISA event rate.
ii) Identifying robust model-independent predictions.
e About 100 participants with diverse expertise / skills and at different stages of
career.
In practice 7 coordinators.

Project divided in many tasks.
Each participant expected to complete several tasks.
Close monitoring of who is doing what.



Project overview

~

( Exhaustive comparison of 20 existing models predicting MBH merger rates
and LISA event rates.

Project

Models span different techniques, resolution, physical assumptions on MBH seeding,
growth, dynamics, galaxy formation models. )

i) Evaluating the global astrophysical uncertainties on the LISA event rate.

Goals
ii) ldentifying robust model-independent predictions.
e Creating uniform templates & e Creating analysing pipeline
. codes to produce the catalogs. & interpreting results
In practice

e Making catalogs e Writing the paper



A landscape of models

Based on
Cosmological simulations or Press-Schechter
SAMs with a volume formalism
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A landscape of models

Separations of the binaries
at the last time step before
numerical coalescence
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A landscape of models

The more flexible SAMs
allow to explore smaller
binary separation.

A few high-resolution
simulations.

Large-scale
cosmological simulations
with resolution ~ 1 kpc
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A landscape of models

logy(¢ / dex™"Mpc™)

Mass function of the
entire MBH population
produced in the models
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A landscape of models

MBH-stellar mass relation of
the entire MBH population
produced in the models
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A landscape of models
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How it is going..

dN/dt (yr—!)
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How it is going..
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How it is going..

No post-processing delays
for Dynamical Friction

10”

With delays

for Dynamical Friction
(binary separation at timestep
before numerical merger)
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How it is going..

No post-processing delays
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Comparing our DF delay modeling to existing delays in some models.
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LISA detection rate (Signal-to-noise ratios)

Input: Sampling of N binaries from each model (for given Meimay, Mssconcary, redshifts).
SNR averaged over location on the sky, inclination, polarisation.
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LISA detection rate (Signal-to-noise ratios)

Input: Sampling of N binaries from each model (for given Meimay, Mssconcary, redshifts).

SNR averaged over location on the sky, inclination, polarisation.
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LISA detection rate (Signal-to-noise ratios)

Input: Sampling of N binaries from each model (for given Meimay, Mssconcary, redshifts).
SNR averaged over location on the sky, inclination, polarisation.

finax h’%

SNR? = — .
fon S2Sn(f)

df.

Lower SNRs for models with
MBH mergers <1e4 Msun.
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Our conclusions

i) Understand global astrophysics uncertainties ii) ldentify the robust model-independent predictions

e MBH merger rate, event rate, MBHB mass

Larger discrepancies across models occurs in
ratios, strongly shaped by MBH formation * ger di panci urs |

the LISA mass band.

modeling.
e Expected mergers with low mass ratios while
e Assembly of low-mass galaxies (and their not accounting for DF delays; reduced to ~0.1
MBHs) not captured by many models. with delays.

e Discrepancies more nuanced at the massive end,
due to models being more anchored to existing
observational constraints and signatures of
seeding being washed out.

e Parameters in Dynamical Friction delay
modeling.

We did not tackle interesting aspects:

e The galactic and large-scale environments fostering MBH mergers (e.g., galaxy
morphologies?, flaments or clusters?) and evolution with redshift.

e EM counterparts of the systems from dual AGN stage to coalescence.



Our conclusions

i) Understand global astrophysics uncertainties

e MBH merger rate, event rate, MBHB mass
ratios, strongly shaped by MBH formation
modeling.

e Assembly of low-mass galaxies (and their
MBHSs) not captured by many models.

e Parameters in Dynamical Friction delay
modeling.

Community value

ii) ldentify the robust model-independent predictions

e Larger discrepancies across models occurs in
the LISA mass band.

e Expected mergers with low mass ratios while
not accounting for DF delays; reduced to ~0.1
with delays.

e Discrepancies more nuanced at the massive end,
due to models being more anchored to existing
observational constraints and signatures of
seeding being washed out.

1. Evaluation of the global astrophysical uncertainties on the LISA event rate.
2. Provide simulated catalogs to test pipelines.
3. Provide simulated catalogs to validate LISA catalogs.



