#### IMBH Pair Evolution in Nuclear Star Clusters Featuring a Dark Stellar-Mass Black Hole Population

## Fazeel Mahmood Khan New York University Abu Dhabi



جامعـة نيويورك ابوظي NYU ABU DHABI Collaborators: Peter Berczik Margaryta Sobolonko Andreas Just Rainer Spurzem Kelly Holley-Bockelmann Andrea V. Macciò



# **Massive Black Hole Binaries**

## • Supermassive Black Holes $(10^6 - 10^9 M_{\odot})$

#### bulges of spiral galaxies/elliptical galaxies

(Kormendy & Richstone 1995; Haring & Rix 2004; Ferrarese & Ford 2005; Kormendy & Ho 2013; Graham 2016)

#### SMBH Binaries via Galaxy Mergers

dynamical friction, 3-body scattering, GW Emission (Begelmann et. al 1980)

#### **Evolution and Merger Timescales**

| $10^9 \mathrm{M}\odot:\mathrm{e}$ |                   | 0.9, | Tcoal | 1-2 Gyr   |
|-----------------------------------|-------------------|------|-------|-----------|
| 10 <sup>8</sup> M⊙ : e            |                   | 0.7, | Tcoal | ~1 Gyr    |
| $10^7 \mathrm{M}\odot:\mathrm{e}$ | $\longrightarrow$ | 0.3, | Tcoal | ~ 0.5 Gyr |

(Khan+ 11,12,16,18, Gualandris & Merritt, 12, Vasiliev+15, Rantala+17)



## **Dwarf Galaxies in Local Universe**





NSCs as observed in a spiral (left) and elliptical (right) galaxy.

Luminous and compact sources that clearly 'stand out' above their surroundings.



# **IMBHs Dynamics in Nucleated Dwarf Galaxies**

| Table 2. M32 Galaxy Parameters |     |                                     |                                   |           |  |  |
|--------------------------------|-----|-------------------------------------|-----------------------------------|-----------|--|--|
| Component                      | n   | $r_{\rm eff}/r_{\rm infl.}(\rm pc)$ | $M_{\star}~(10^7~{ m M}_{\odot})$ | $a_2/a_1$ |  |  |
| IMBH                           |     | 1.61                                | 0.25                              |           |  |  |
| NSC                            | 2.7 | 4.4                                 | 1.45                              | 0.75      |  |  |
| Bulge                          | 1.6 | 108                                 | 79.4                              | 0.79      |  |  |
| Disk                           | 1.0 | 516                                 | 19.3                              | 0.79      |  |  |

M32



| Table 5. NGC 404 Galaxy Parameters |      |                       |                                   |           |  |  |  |
|------------------------------------|------|-----------------------|-----------------------------------|-----------|--|--|--|
| Component                          | п    | $r_{\rm eff}(\rm pc)$ | $M_{\star}~(10^7~{ m M}_{\odot})$ | $a_2/a_1$ |  |  |  |
| IMBH                               |      | 0.35                  | 0.007                             |           |  |  |  |
| NSC1                               | 0.5  | 1.6                   | 0.34                              | 0.97      |  |  |  |
| NSC2                               | 1.96 | 20                    | 1.1                               | 0.95      |  |  |  |
| Bulge                              | 2.50 | 675                   | 84.4                              | 0.99      |  |  |  |
|                                    |      |                       |                                   | -         |  |  |  |
| Bulge                              | 2.50 |                       | 84.4                              |           |  |  |  |
|                                    |      |                       |                                   |           |  |  |  |

| Table 6. NGC 205 Galaxy Parameters |     |                       |                                   |           |  |  |  |
|------------------------------------|-----|-----------------------|-----------------------------------|-----------|--|--|--|
| Component                          | п   | $r_{\rm eff}(\rm pc)$ | $M_{\star}~(10^7~{ m M}_{\odot})$ | $a_2/a_2$ |  |  |  |
| IMBH                               |     | 0.14                  | 0.004                             |           |  |  |  |
| NSC                                | 1.6 | 1.3                   | 0.18                              | 0.9       |  |  |  |
| Bulge                              | 1.4 | 516                   | 97.2                              | 0.9       |  |  |  |

**IGC 5206** 





**Parameters** 

(pc)

 $M_{\star}~(10^7~{
m M}_{\odot})$ 

0.047 0.17

1.28

241

 $a_2/a_1$ 

0.96

0.96

0.98

|              | Table 4. NGC | 5206 Ga | laxy l                  |
|--------------|--------------|---------|-------------------------|
|              | Component    | n       | <i>r</i> <sub>eff</sub> |
|              | IMBH         |         | 1                       |
|              | NSC1         | 0.8     | 3                       |
|              | NSC2         | 2.3     | 1(                      |
|              | Bulge        | 2.57    | 9                       |
| <u>.30''</u> | Bulge        | 257     | 6                       |

|                |        | •                     |                                   |         |
|----------------|--------|-----------------------|-----------------------------------|---------|
| Table 3. NGC : | 5102 G | alaxy Parar           | neters                            |         |
| Component      | п      | $r_{\rm eff}(\rm pc)$ | $M_{\star}~(10^7~{ m M}_{\odot})$ | $a_2/a$ |
| IMBH           |        | 1.2                   | 0.088                             |         |
| NSC1           | 0.8    | 1.6                   | 0.71                              | 0.68    |
| NSC2           | 3.1    | 32                    | 5.8                               | 0.59    |
|                |        |                       |                                   |         |

| Bulge | 1200 |  |
|-------|------|--|
|       |      |  |

 $a_1$ 

### **MBH Binary Evolution in M32**

Khan & Holley-Bockelmann 2021, MNRAS, 508, 1174





#### **MBH Binary Evolution in Nucleated-Dwarfs**

Khan & Holley-Bockelmann 2021, MNRAS, 508, 1174



### **MBH Binary Evolution in Nucleated-Dwarfs**

Khan & Holley-Bockelmann 2021, MNRAS, 508, 1174



# **IMBHs Dynamics in Non-Nucleated Dwarf Galaxies**

>Dwarfs in Next Generation Fornax Survey (NGFS) (Munoz et al. Eigenthaler et al. 2018; Ordenes-Briceño et al. 2018). ≻The masses of dwarf galaxies in Fornax Survey (NGFS) (Muñoz et al. 2015;

>The masses of dwarf galaxies in Fornax cluster are between  $9.5 \ge \log M_{\star}/M_{\odot} \ge 5.5$ (Eigenthaler et al. 2018).

 $\succ$  We adopt 10<sup>8</sup> M<sub> $\odot$ </sub> for the stellar mass and ~  $10^5 M_{\odot}$  for IMBH mass.



| Run   | $R_{\rm eff}$ (pc) | $ ho_0  (\mathrm{M}_\odot/\mathrm{pc}^3)$ | $r_h(pc)$ | $\rho_{r_h}(M_\odot/{ m pc}^3)$ | $s(pc^{-1}/Myr)$ | $e_{\mathrm{f}}$ | $T_{\rm coal}({\rm Gyr})$ | $T_{\rm coal}(e_{0.95})$ | $T_{\text{coal}}(e_{0.99})$ |
|-------|--------------------|-------------------------------------------|-----------|---------------------------------|------------------|------------------|---------------------------|--------------------------|-----------------------------|
| D0.8  | 560                | $4.5 \times 10^{-1}$                      | 59        | $1.7 \times 10^{-1}$            | 0.00025          | 0.93             | No                        | 600                      | 224                         |
| D1.0  | 560                | $1.7 \times 10^{0}$                       | 40        | $1.9 \times 10^{-1}$            | 0.0003           | 0.76             | No                        | 500                      | 180                         |
| D1.5  | 560                | $1.8 \times 10^1$                         | 36        | $1.3 \times 10^{0}$             | 0.004            | 0.83             | No                        | 70                       | 24                          |
| D1.5c | 200                | $1.9 \times 10^{2}$                       | 13        | $2.6 \times 10^1$               | 0.055            | 0.92             | No                        | 13                       | 3.2                         |
| D2.0  | 200                | $5.7 \times 10^{2}$                       | 8         | $9.1 \times 10^{1}$             | 0.2              | 0.17             | No                        | 3.45                     | 1.3                         |

Khan et al 2024

Biava+2019

# Nuclear Star Clusters in NGC205 & NGC404

| Table 6. NGC 205 Galaxy Parameters |          |     |                       |                                   |           |  |  |
|------------------------------------|----------|-----|-----------------------|-----------------------------------|-----------|--|--|
| С                                  | omponent | п   | $r_{\rm eff}(\rm pc)$ | $M_{\star}~(10^7~{ m M}_{\odot})$ | $a_2/a_1$ |  |  |
|                                    | IMBH     |     | 0.14                  | 0.004                             |           |  |  |
|                                    | NSC      | 1.6 | 1.3                   | 0.18                              | 0.95      |  |  |
|                                    | Bulge    | 1.4 | 516                   | 97.2                              | 0.90      |  |  |



| Table 5. NGC 404 Galaxy Parameters |                         |                          |                                   |                          |  |  |
|------------------------------------|-------------------------|--------------------------|-----------------------------------|--------------------------|--|--|
| Component                          | n                       | $r_{\rm eff}(\rm pc)$    | $M_{\star}~(10^7~{ m M}_{\odot})$ | $a_2/a_1$                |  |  |
| IMBH<br>NSC1<br>NSC2<br>Bulge      | <br>0.5<br>1.96<br>2.50 | 0.35<br>1.6<br>20<br>675 | 0.007<br>0.34<br>1.1<br>84.4      | <br>0.97<br>0.95<br>0.99 |  |  |
| Bulge                              | <br>2.50                | 675                      | 84.4                              | 66.0                     |  |  |
|                                    |                         |                          |                                   |                          |  |  |

# **Nuclear Star Cluster Models**



Panamarev et al. 2019

Bhacall & Wolf Cusp of stellar mass black holes with 1% of NSC mass

| NSC Component               | N                    | Mass $(10^6 M_{\odot})$  | $R_{aff}, R_{infl}$ (nc) | $n \text{ or } \gamma$ | bla cla          |
|-----------------------------|----------------------|--------------------------|--------------------------|------------------------|------------------|
| NGC205                      |                      | 11100 (10 1110)          | rejj, rinji (PC)         |                        | 0,0,0,0          |
| Store                       | $1.84 \times 10^{6}$ | 1 Q/                     | 12                       | 1.6                    | 0.05.0.95        |
|                             | $1.04 \times 10^{3}$ | 1.04                     | 1.5                      | 1.0                    | 0.95, 0.85       |
| BW Cusp                     | $1.8 \times 10^{3}$  | 0.018                    | 0.14                     | 1.75                   | 0.95, 0.85       |
| IMBH                        | 1                    | 0.022                    | 0.14                     |                        |                  |
| NGC404                      |                      |                          |                          |                        |                  |
| Stars                       | $4.25 \times 10^{6}$ | 4.25                     | 1.85                     | 0.65                   | 0.95, 0.85       |
| BW Cusp                     | $4.25 \times 10^{3}$ | 0.0425                   | 0.35                     | 1.75                   | 0.95, 0.85       |
| IMBH                        | 1                    | 0.027                    | 0.35                     |                        |                  |
|                             |                      | Galaxy models I          | built using              |                        |                  |
|                             |                      | GAMA (Vasili             | ev - 2019)               | -                      |                  |
| 10 <sup>8</sup> E           |                      |                          |                          |                        |                  |
|                             |                      | BW 0.0 1                 |                          |                        | BW 0.0           |
| 107                         |                      | BW 5.0                   | 07                       |                        | BW 0.32          |
|                             |                      | nsc 2.5                  |                          |                        | nsc 1.3          |
| Ω 10 <sup>6</sup>           |                      | r <sub>eff</sub> v 1     | .06                      |                        | r <sub>eff</sub> |
| d/                          | h l                  | d/s                      |                          |                        |                  |
| ¥ 10 <sup>5</sup> =         | Y                    |                          | .05                      | - de                   | +                |
| ۹ <sup>-</sup> <sup>-</sup> | M.                   |                          |                          | DA.                    | h.               |
| $10^4$                      | ×1.                  |                          | 10 <sup>4</sup>          |                        |                  |
|                             |                      | <b>N</b>   <b>    </b> . | .3                       |                        | 🦄 🕴              |
| 10 <sup>3</sup>             |                      |                          | 0.01                     | 0.1                    | 1                |
| 0.01                        | 0.1                  | 1                        |                          | r (pc)                 |                  |

# **N-body Simulations - Phi-GPU (hybrid)**

#### Phi-GPU (Berczik et al.):

- parallel direct summation N-body code (GPU supported).

$$\mathbf{F}_{i} = -m_{i} \sum_{j=1, j \neq i}^{N} \frac{m_{j}(\mathbf{r}_{i} - \mathbf{r}_{j})}{(|\mathbf{r}_{i} - \mathbf{r}_{j}|^{2} + \epsilon^{2})^{3/2}}$$

$$\in_{*,*} = 10^{-4} pc$$
 $\in_{bh,bh} = 0 pc$ 
 $\in_{bh,*} = 10^{-6} pc$ 



-Fourth-order Hermite integrator with individual block time steps (PN terms upto 3.5).

-The N-body integrations were carried on ACCRE cluster at Vanderbilt University & JUWELS @ Juelich.



# **IMBHs Dynamics in NGC205**



# **Density Profile Evolution for NGC205**





Similar density for both
 the stellar and BH
 components.

Density slopes flattens
 for both the components
 as binary scour the
 central region of NSC.

 BH component reestablishes Bhacall & Wolf cusp after ~ 10 Myr.

# **Relaxation Time & Velocity Dispersion**



# IMBHs Dynamics (q =1:40) NGC205



# **IMBHs Dynamics in NGC404**



# **IMBHs Dynamics in NGC404**



# **Relaxation Time – NGC404**



 $T_{relax.}$  ~ few hundred Myr after core scouring by IMBH binary >> duration of the simulation

# Energy Exchange & Merger Time – NGC404



BH component shortens the merger time by a factor of 2.

# Conclusions

- □ BH component significantly influences the dynamics of the IMBH binary, nearly doubling the sinking rate and halving the merger time.
- During the initial phase of inspiral, the IMBH binary disrupts both the stellar and BH cusps.
- □ BH cusp quickly regains its steep slope due to its shorter relaxation time.
- BH component continues to dominate the evolution of the IMBH binary, despite being much less massive compared to the stellar component.
- □ IMBH binary transfers its energy to the BHs , which quickly dissipates to stellar component due to relaxation/mass-segregation.
- □ For a high mass ratio of 1:40, IMBHs in binary achieve coalescence in very short time almost falling on radial orbits high eccentricity.

