

Uncovering the origin of intermediate-mass black holes with LISA and other future GW detectors

Manuel Arca Sedda

grace

LISA AstroWG MPA-Garching 05/07 - 11 - 2024 MERAC

1010 1011

IMBHs: what we do and don't know

Scenario #1: IMBHs are a BH category

Scenario #2: IMBHs populate the tail of BH and SMBH mass functions

IMBHs: formation in dense star clusters

Multiple stellar collisions

see e.g. "The DRAGON-II simulations" paper series (rewarding, but computationally expensive) *Arca Sedda et al 2023a, 2024a,b*

see also e.g. Portegies-Zwart&McMillan02, Giersz+15, Mapelli16, Di Carlo+20, Rizzuto+21, Gonzalez+21, Chattopadhyay+23, Barber+24

DRAGON-II vs B-POP: beast and beauty

Arca Sedda et al 2023a, 2024a,b Arca Sedda in prep

Nbody simulations PROs:

- Accurate
- Impact of primordial binaries
- Impact of cluster evolution and structure

Nbody simulations CONs:

- High computational cost
- No reliable statistics within reasonable times
- (~ 78 BBHs in 5 months, ~ 8 IMBHs in 5 months)

SOLUTION:

- Population synthesis code encoding dynamics+stellar evolution ($\sim 10^6$ in 0.5 hrs)
- Rapid exploration of the parameter space (Metallicity, SFR, environment, BH natal spin, mass, kicks...)

MPA Garching

DRAGON-II vs B-POP: beast and beauty

Arca Sedda et al 2023a, 2024a,b Arca Sedda in prep

B-POP

- Population synthesis code encoding dynamics+stellar evolution (10⁶ BBH/hr)
 - Formation of IMBH seeds from stellar collisions
 - Fraction of isolated binaries
 - SFR normalisation
 - SFR for YC, GC, NC

MPA Garching

DRAGON-II vs B-POP: beast and beauty

Arca Sedda et al 2023a, 2024a,b Arca Sedda in prep

B-POP

- Population synthesis code encoding dynamics+stellar evolution (10⁶ BBH/hr)
 - Formation of IMBH seeds from stellar collisions
 - Fraction of isolated binaries
 - SFR normalisation
 - SFR for YC, GC, NC

05 - 11 - 2024

B-POP: making isolated and dynamical BBH mergers has never been that easier

Arca Sedda and Benacquista 2019, Arca Sedda et al 2020,2023, Arca Sedda in prep, Paiella+in prep**

Case #1: no IMBH seed progenitors

Case #2: IMBH seed from stellar collisions

05 - 11 - 2024

B-POP: making isolated and dynamical BBH mergers has never been that easier

Arca Sedda and Benacquista 2019, Arca Sedda et al 2020,2023, Arca Sedda in prep, Paiella+in prep**

<u>Model S2a</u> SFR for IBs, YCs, NCs: Madau & Fragos 2017 SFR for GCs: El-badry+2019

Model S5a

SFR for IBs, YCs: Madau & Fragos 2017 SFR for GCs & NCs: Katz & Ricotti 2013

B-POP: making isolated and dynamical BBH mergers has never been that easier

Arca Sedda and Benacquista 2019, Arca Sedda et al 2020,2023, Arca Sedda in prep, Paiella+in prep**

Model Sza

Model S5a

First things first: do these model predict a reasonable BBH merger rate?

B-POP: making isolated and dynamical BBH mergers has never been that easier

Arca Sedda and Benacquista 2019, Arca Sedda et al 2020,2023, Arca Sedda in prep, Paiella+in prep**

Model S5a

05 - 11 - 2024

8-POP: The "dynamical" IMBH merger rate and detection prospects

Arca Sedda+21, Arca Sedda+24b, Arca Sedda in prep, Paiella+in prep**

Model S2a

Model SJa

8-POP: The "dynamical" IMBH mass spectrum

Arca Sedda and Benacquista 2019, Arca Sedda et al 2020,2023, Arca Sedda in prep, Paiella+in prep**

8-**POP**: The "dynamical" IMBH merger rate and detection prospects

Arca Sedda+21, Arca Sedda+24b, Arca Sedda in prep, Paiella+in prep**

$\Gamma_{\rm IMRI} = \Omega_s \int_{M_1}^{M_2} \int_0^{z_{\rm hor}} \frac{\mathrm{d}n_{\rm IMRI}}{\mathrm{d}M_{\rm IMBH}\mathrm{d}z} \frac{\mathrm{d}V_c}{\mathrm{d}z} \frac{\mathrm{d}z}{1+z} \mathrm{d}M_{\rm IMBH}$						
Detector 10 yr mission*	Rate Model S2a	Rate Model S5a				
LISA	5	80				
ET	90	390				
LGWA	14	150				

*Around 20-30% of sources are multiband

AstroWG meeting MPA Garching

05 - 11 - 2024

Summary

- **B**-**POP** enables us to model simultaneously isolated and dynamical BBHs altogether with IMBH seeding and growth
- We build synthetic Universe models to derive the BBH merger rate and other observables (e.g. mass spectrum)
- The IMBH mass spectrum depends on the fraction of binaries and the SFR of star clusters
- A significant fraction of IMRIs may appear as multiband source
- Future detection of IMRIs can help placing constraints on the formation of massive star clusters

IMBHs: formation in dense star clusters

$t_{coal} = 2 \text{ yr}; M_{1,2} = (500 + 30) M_{SUN}; e = 0$				1x10 ⁻¹⁶
Z		SNR		
	ЕТ	LGWA	LISA	
0.1	4740	99	23	
0.3	1521	32	9	
0.5	808	18	6	
1.0	389	9	4	- 1x10 ⁻²²
2.0	164	5	2	
			1	1x10 ⁻²⁴ 1x10 ⁻²⁴ 1e-05 1e-04 1e-03 1e-02 1e-01 1e+00 1e+01 1e+02 f [Hz]

B-POP: making isolated and dynamical BBH mergers has never been that easier

Arca Sedda and Benacquista 2019, Arca Sedda et al 2020,2023, Arca Sedda in prep, Paiella+in prep**

Global mass spectrum of merger primary

All mergers models show clear differences at m < 30 Msun

B-POP: making isolated and dynamical BBH mergers has never been that easier

Arca Sedda and Benacquista 2019, Arca Sedda et al 2020,2023, Arca Sedda in prep, Paiella+in prep**

Global mass spectrum of merger primary

All mergers models show clear differences at m < 30 Msun

Mergers at z < 2 models are barely distinguishable

B-**POP**: making isolated and dynamical BBH mergers has never been that easier

05 - 11 - 2024

AstroWG meeting

MPA Garching

8-POP: The "dynamical" IMBH mass spectrum

Arca Sedda and Benacquista 2019, Arca Sedda et al 2020,2023, Arca Sedda in prep, Paiella+in prep**

05 - 11 - 2024

B-POP: The "dynamical" IMBH mass spectrum

Arca Sedda and Benacquista 2019, Arca Sedda et al 2020,2023, Arca Sedda in prep, Paiella+in prep**

