Alexandre Toubiana

LISA astrophysics WG meeting, 05/11/2024

Towards LISA population study

Based on

Toubiana, Karnesis, Lamberts, Miller A&A 2024

Toubiana, Sberna, Volonteri, Barausse, Babak, Enficiaud, Izquierdo-Villalba, Gair, Greene, Quelquejay Leclere astro-ph.GA:2410.17916

Toubiana, Gair, ongoing

Santini, Karnesis, Toubiana, ongoing

Population studies

Mapelli, Front. Astron. Space Sci. 2020

LVK, PRX 2023

Extract global properties of observations to allow the astrophysical interpretation

Steps for population studies

Steps for population studies

5

Population model

Steps for population studies

5

Challenges for LISA

LISA Redbook, 2024

- Lack of parametrised description of population of sources $\ p(heta|\Lambda)$

Challenges for LISA

LISA Redbook, 2024

- Lack of parametrised description of population of sources $\ p(heta|\Lambda)$
- Need to fit data all together (Global Fit), problem for hierarchical analysis:
 - signals are not independent
 - variable number of sources
 - selection function?

Massive black hole binaries

- Cosmological and semi-analytic models: explore impact of physical assumptions but high computational cost
- Toubiana + PRD 2021: using a finite discrete set of model to describe the population can lead to biases

 Goal: develop a framework to describe the formation and evolution of massive black holes suited for analysing data (see also Langen, Tamanini, Marsat, Bortolas 2024)

Parametric model for massive⁹ black holes

POMPOCO: Parametrisation Of the Massive black hole POpulation for Comparison to Observations

(Toubiana, Sberna, Volonteri, Barausse, Babak, Enficiaud, Izquierdo-Villalba, Gair, Greene, Quelquejay Leclere astro-ph.GA:2410.17916)

 Press-Schechter for halo merger trees and parametric prescriptions for seeding, accretion and mergers

Parametric model for massive¹⁰ black holes

POMPOCO: Parametrisation Of the Massive black hole POpulation for Comparison to Observations

(Toubiana, Sberna, Volonteri, Barausse, Babak, Enficiaud, Izquierdo-Villalba, Gair, Greene, Quelquejay Leclere astro-ph.GA:2410.17916)

- Press-Schechter for halo merger trees and parametric prescriptions for seeding, accretion and mergers
- Assess compatibility between electromagnetic observations and PTA GW spectrum, full Bayesian analysis gives posterior on the 12 parameters of POMPOCO

Results of POMPOCO¹¹

MBH luminosity distribution in the nearby Universe

MBH luminosity distribution in the distant Universe (JWST)

Results of POMPOCO¹²

MBH luminosity distribution in the nearby Universe

MBH luminosity distribution in the distant Universe (JWST)

Results of POMPOCO¹³

MBH luminosity distribution in the nearby Universe

MBH luminosity distribution in the distant Universe (JWST)

LISA predictions very broad

Pulsar Timing Array spectrum

Results of POMPOCO¹⁴

MBH luminosity distribution in the nearby Universe

Pulsar Timing Array spectrum

MBH luminosity distribution in the distant Universe (JWST)

LISA predictions very broad

Next:

- Refine model
- Include spins/eccentricity
- Mock LISA analysis

Double white dwarfs¹⁵

LISA Redbook, 2024

- Stochastic foreground + resolvable population
- Impact of tidal effects and mass transfer?
 Toubiana, Karnesis, Lamberts, Miller A&A 2024

 Semi-analytic model for the evolution of DWDs after formation (provided by Astrid Lambert's simulation)

16

 Semi-analytic model for the evolution of DWDs after formation (provided by Astrid Lambert's simulation)

17

 Semi-analytic model for the evolution of DWDs after formation (provided by Astrid Lambert's simulation)

18

 Semi-analytic model for the evolution of DWDs after formation (provided by Astrid Lambert's simulation)

19

 Semi-analytic model for the evolution of DWDs after formation (provided by Astrid Lambert's simulation)

20

Includes the effect of GWs, tides, mass-transfer

Tides help the binaries "survive" mass transfer

Impact on LISA observations

Total noise

Number of resolvable sources

 Foreground can be used to measure intensity of tidal effects (Santini, Toubiana, Karnesis, on going). Other astrophysical features?

Impact on LISA observations

Total noise

Number of resolvable sources

- Foreground can be used to measure intensity of tidal effects (Santini, Toubiana, Karnesis, on going). Other astrophysical features?
- Combine foreground and resolvable sources for population study (Toubiana, Gair, on going):
 - inverse-mapping from foreground to underlying population?
 - "Selection function"?
 - confusion between populations?

Conclusions

"New" and numerous sources in LISA require new modelling and analysis techniques. Many challenges to be tackled!

POMPOCO, credits: L. Sberna

POMPOKO, credits: Studio Ghibli

Thank you for your attention!

Merger tree

 Extended Press-Schechter (Parkison+2007)

z = 20

Merger tree

- Extended Press-Schechter (Parkison+2007)
- Evolve MBHs using parametric prescriptions instead of semi-analytic ones
- Gain in computational power

z = 20

Seeding

- Seed leaf halos at $z \geq 10$ with $M_{\rm halo} > M_{\rm cut}$ with probability $f_{\rm BH}$

Draw mass from log-normal distribution

 $\mathcal{N}(\log(\mu_0), \sigma_m)$

Limit to 10% of baryonic mass of halo

Accretion

$$\dot{m} = f_{\rm Edd}(1-\epsilon)\dot{m}_{\rm Edd}, \ \epsilon = 0.1$$

- Two accretion modes:
 - steady mode: draw $f_{\rm Edd}$ every $T_{\rm steady}$ $p(\log_{10} T_{\rm steady}) = \mathcal{U}[10^{-3}, 0.5] \text{Gyr}$ $p(f_{\rm Edd}) \propto f_{\rm Edd}^{\gamma_{\rm steady}-1}, f_{\rm Edd} \in [10^{-4}, 1]$
- burst mode: draw f_{Edd} after major halo merger (q_h > 0.13), valid for time t_{burst} p(f_{Edd}) ∝ f^{γ_{burst}-1}_{Edd}, f_{Edd} ∈ [10⁻², 10]
 Stop accretion for z < z_{cut}, and log₁₀ m_{MBH} > log₁₀ m_{MBH,0}(1 + z)^α

BH mergers

Following halo mergers:

- If major halo merger, $(q_h > 0.13)$ black holes form a binary that merges after $t_{dyn. fric.} + t_{delay}$
- If minor halo merger, BHs in secondary halo sink for $t_{\rm dyn.\ fric.}$ before forming a binary that merges within $t_{\rm delay}$
- $t_{\rm dyn. \ fric.}$ computed from Volonteri et al. 2003
- For triple/quadruple systems use results of Bonetti et al. 2018

Summary of the model

- 12 free parameters:
 - seeding:

 $\mu_{\mathrm{seed}}, \sigma_{\mathrm{seed}}, M_{h,\mathrm{seed}}, f_{\mathrm{seed}}$

accretion:

 $\gamma_{\text{burst}}, t_{\text{burst}}, \mu_{\text{steady}}, \sigma_{\text{steady}}, z_{\text{cut}}, m_{\text{cut},0}, \alpha_{\text{cut}}$

- Merger: t_{delay}
- ~1h to run 500 parameters
- Run MCMC to fit observations

Mstar-Mbh

Posterior on hyperparameters

Posterior on hyperparameters

LISA prediction

³⁴ "Systemtatics" in population

Toubiana +, PRD 2021

³⁵ **"Systemtatics" in population**

Toubiana +, PRD 2021

POMPOKO

 Pompoco: Parametrisation Of the Massive black hole POpulation for Comparison to Observations ?

Angular momentum balance equation:

$$\dot{J}_{\rm orb} + \dot{J}_1 + \dot{J}_2 = J_{\rm GW} + J_{\rm loss}$$

Evolution of WD's angular momentum:

$$\dot{J}_i = j_i \dot{m}_i - \frac{I_i}{\tau_{s,i}} (\omega_i - \omega_{\rm orb})$$

Scaling of synchronisation timescale:

$$\tau_{s,i} \propto \left(\frac{m_i}{m_{-i}}\right)^2 \left(\frac{a}{R_i}\right)^6$$

$$\dot{f}_{\rm GW}^{\rm astro} = \dot{f}_{\rm GW} - \dot{f}_{\rm GW}^{\rm GR}$$