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Foreshadows:                                                                                                                            
1990s: “Statistical revolution”[1], 
2011: “Neural revolution” [2]         
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What is the role of linguistics in NLP? 
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“CL”, “NLP”, and “Linguistics” 
Linguistics 

Study systematicity and variation in communication between humans

NLP 

Developing technology for sophisticated computational processing of text

CL 

As a broad field: includes NLP

A narrow focus (“cL”): answer RQs about language (rather than technology)
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It’s 2024

LLMs produce fluent text without any specialised modules

What is the role of linguistics?  

What NLP areas rely on it?
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Thought experiment: Without Linguistics
Resources: No carefully curated data sets 

Evaluation: Lack of expertise for designing human evaluation and cannot 
characterize many phenomena that challenge systems

Low-Resource Settings: Struggle to understand why approaches that work for 
some language don’t work for another. 

Interpretability and Explanation: Can’t develop and test many hypothesis, 
harder to talk about observed system behavior.

Study of Language: Purely commercial technology be indifferent to applications 
connected with scholarly or community-driven linguistic work.
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NLP RELIES on 
Linguistics
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The field of NLP is committed to an empirical methodology 

Machine learning models are trained and evaluated on language data 

Resources are supported by various degrees of linguistic knowledge

From proficiency in a language to formal training in linguistics
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Examples  
Linguistics increases data set diversity and quality

[3]: Linguistic diversity by controlling prepositions and complementizers

[4]: MT references need be paraphrased by linguists to ensure quality

L-awareness in resource creation and development: 

Document characteristics and intended uses of datasets 

Resources with linguistic annotations: ED, UD, AMR, DRS, etc.
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Evaluation
Contribute to big AI benchmarks

A large portion of BigBench datasets are linguistic tasks [5]

System diagnostics and Fine-Grained Evaluation

[6, 8]: Challenge sets for linguistic and sociolinguistic performance

[7]: Finer Evaluation through semantic structures 

Meta-Evaluation and Metric design

E.g., What Linguistic features does “BERTscore” actually measure? [18]

New measures: E.g., Incorporate sociolinguistic lexica to measure social bias [19]
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“Low-resource” - Goal based definition
NLP goal: 

Process low-resource languages

Science goal: 

Learning efficiency: Scientific insights for/on efficient learning

Practitioner’s goal: 

Low-budget, Low computational resources
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Low-budget
In our toolbox: Taggers, Parsers, etc.

Explore, filter, structure large data sets

Can be much cheaper than using LLMs; low computational cost
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Low resource languages
Linguistics in LLMs for processing low-resource languages:

[10] Use language-balanced tokenization with morphemes; 

[11] Add linguistic features and call for “Hiring a linguist”;

Linguistically sensitive supervision

[12]: LLMs can be harmful to local language communities, if applied in a top-down 
approach, linguists can help understand communication situations

55



Interpretability and Explanation

56



Linguistics takes center stage

57



Linguistics takes center stage
Meta-language: NLP is pervaded by Linguistic meta-language 

58



Linguistics takes center stage
Meta-language: NLP is pervaded by Linguistic meta-language 

Interpretability method goal: binding observations to this language
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Example of presenter’s work [13]
Semantic similarity is a crucial NLP task 

But how is similarity assessed? 

Neural models are large black boxes

Idea: Bind embedding parts to concepts
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Ideas from linguistics and adjacent fields in debates

How to interpret what NLP models can represent?

How to define machine ‘understanding’? [14, 15]

Is grounding required for a model to capture meaning? [e.g., 16, 17]
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Study of Language

Linguistics as the application domain

Make content available vs. Study language systems
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Study language systems
Classic cL tools and tasks

Corpora, Pattern search

Documentary and historical linguistics

Noisy data, image or audio form (without transcriptions), orthography?; basic grammar? 

Need not: Run-off-the-mill LLMs; Need: noise tolerant interdisciplinary research

Language-focused study in fields beyond linguistics proper

Law, Literature, Humanities, etc.
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Summary
The acronym RELIES is non-exhaustive 

RELIES indicates ways in which NLP did, does, will continue to, and is going to 
rely on linguistics

Read more: https://arxiv.org/abs/2405.05966

Your 
thoughts?
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Thank you for listening
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Addendum
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Study on LLM translation from a grammar book
LLMs can translate from one grammar book [12]

But cannot reach the level of a linguist

A linguist is also needed to establish the upper-bound
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