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Background: Optimizing mechanical

ventilation (MV) is complex and prone to
errors. With rising ICU demand and staff
shortages by 2030 °, inappropriate settings
risk lung damage and increased mortality.

Objective: Develop Al-based decision
support (Al-DSS) system to
provide recommendations for MV settings
to reduce lung injury and ventilator time.

Significance: The Al system improves ICU
care by reducing ventilator time, improving
survival, reducing complications, and
lowering healthcare costs.
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Methods

Data

|ICU datasets collected
from hospitals across the
US and Europe.

Rewards

Designed to promote
safe mechanical
ventilation practices and
minimize ventilator time.

Training

Offline RL', which learns
an optimal policy from
retrospective data to
Improve long-term
treatment outcomes.
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Figure 1: SHAP plot illustrating the influence of
features on the policy’s choice of ventilation
settings °

the Offline RL algorithm.

Discussion

* The trained policy outperforms clinicians in achieving safer mechanical
ventilation and reducing ventilator time (Figure 2).

* |tperforms similarly or better than clinicians in animal testing.

* Bias mitigation methods improve fairness across different demographic
groups (Figures 3 & 4).

« XAlusing SHAP values explains the key policy parameters that significantly
Impact the policy (Figure 1).

* Model-based methods further explain how the current decision will affect
future timesteps.
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Figure 2: Policy performance over time during training with

Conclusion

References

ML Evaluation

Using Fitted Q-Evaluation
(FQE)* to estimate the
policy's long-term
performance from
retrospective data.

Medical Evaluation
Clinicians review the
algorithm's
recommendations on
offline data
systematically.

Bias Detection
Detecting and mitigating
biased outcomes across
demographic groups.
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Shadow Deployment
The algorithm operates
alongside existing
systems to safely
evaluate its performance
In real-world conditions.

Target Population
Deployment across
nospitals in Germany,
taly, Poland and Spain

Explainability

Applying XAl methods,
iIncluding model-based
approaches and SHAP, to
explain policy
recommendations.
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Figure 3&4: Positivity rate depicting the percentage
of instances where the algorithm selected higher-
performing actions and across different
demographic groups (age and gender) before and
after applying bias mitigation measures.
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platform for

The AI-DSS demonstrates potential in enhancing mechanical ventilation by
iImproving performance, treatment fairness, and explainability.

Introduces a practical
approaches into clinical settings, serving as a proof of concept for future Al-DSS
applications.
Potential directions for future work include incorporating multi-modal ICU data,
such as textual and visual inputs, to improve state representation. Exploring
continuous learning and developing individualized patient policies could further
enhance the system’s adaptability and impact on patient outcomes.
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