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Abstract

I measure the impact of trailbridges connecting rural Rwandan villages on remote-sensed
developmental and ecological outcomes. Modern trailbridges provide safe and consistent
commutes to work, school, markets and healthcare. To identify the causal effect of in-
creasing villagers’ mobility, I use variation in bridge construction timing and feasibility to
compare villages in similar need of a bridge. The average treatment effect is a 3% increase in
population, a 14% increase in night time light, and a 40% reduction in deforestation, indica-
tive of improved biomass fuel market efficiency due to trade. Comparing villages on either
side of the bridge by distance to all-weather roads reveals consistent effects. These findings
underscore the value of completing missing pedestrian links with affordable infrastructure
in fostering socio-economic development and environmental sustainability.

1 Introduction
Four out of five individuals with incomes below the international poverty line live in rural areas,
giving the fight to eliminate global poverty a substantial spatial component (UNDESA, 2021).
On one hand, space (e.g., large distances and difficult topography) is a developmental challenge
to overcome–hampering rural labor and goods markets integration and leading to inadequate
access to public services, infrastructure and social protection (UNDESA, 2021). On the other,
space provides rural residents with their livelihoods in the form of agricultural activities, natural
resources and ecosystem services (FAO, 2019).

In hilly and river-intersected rural regions with little infrastructure, high-quality trailbridges
promise to overcome spatial isolation and eliminate uncertainty in access to and from otherwise
remote villages. Evaluations of trailbridges in Nicaragua and Rwanda built by the non-profit
Bridges to Prosperity (B2P henceforth) directly led to substantial wage earning increases (Brooks
and Donovan, 2020; Thomas et al., 2021). Given the interdependency of the livelihoods of the
extreme poor and the environment, and the potential unintended negative ecological effects of
development programs (Heß et al., 2021) I look at spatial outcomes of trailbridges built from 2009
to 2022 in rural Rwanda, where in 2016 63% of individuals lived below the international poverty
line of $1.90 a day (The World Bank, 2020). Increasing connectedness through trailbridges
led to a meaningful decrease in deforestation and an increase in night time light (henceforth
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NTL) radiance and remote-sensed, estimated population. The positive results of these relatively
affordable infrastructure projects targeting missing links stands in stark juxtaposition to the
road-heavy transportation budgets of developing countries and international donors. Despite
the predominance of pedestrian and non-motorized transport in the developing word, only a
fraction of budgets target pedestrian improvements (Kim and Dumitrescu, 2010).

In order to causally identify an effect, I use variation in bridge construction feasibility and
timing to compare villages in similar need of a bridge. B2P identified more villages in need of a
bridge than could be built immediately, while other villages have riverbeds with topographical
features that precluded the construction of the types of bridges B2P built in the period from
2008-2022. Quasi-random rollout of trailbridges allows for estimation of effects in a difference-in-
differences model. I provide evidence of parallel trends in pre-treatment outcomes using pre-trend
estimates from Borusyak et al. (2021) that are robust to treatment effect heterogeneity and the
Rambachan and Roth (2022) pre-testing problem. More so, deforestation results are consistent
in magnitude when restricting the sample to sites with randomized construction dates from
2021 onwards taking part in a separate evaluation (Macharia et al., 2022). Including bridges
bult before randomization allows for measurement of medium term impacts, which is necessary
to see effects on population and night time light. Results are also consistent when modifying
parallel trend assumptions to allow linear or quadratic time trends or geographic cluster-year
fixed effects.

The results are consistent with several likely mechanisms such as a substitution in land-
intensive agricultural labor for wage-market labor, and better access to markets and mature
wood-sources. The bridge facilitates more wage labor by decreasing costs/impediments from
commutes. The resulting increased monetary income can decrease pressure on forests for re-
sources (such as cooking fuel) and the substitution of labor reduces demand for farm land.
Rwandans rely on biomass for fuel. When floods cut off villages, access to a large share of
local woodlots is severed. Relying on forests on the same side of a bridge could result in more
deforestation if there is not enough wood for the population or the forests are not ready for
harvesting. Estimated population also increased, perhaps because villages are more attractive
once better connected. Any new deforestation pressure from increased population is outweighed
by other treatment effects. Population could by itself cause an increase in NTL, however there is
still a significant increase in estimated NTL even while controlling for population. This suggests
bridges increased NTL through other channels, such as increased incomes.

1.1 Background

1.2 Forest Use, Flooding and Bridges in Rwanda

Near sample trailbridges, canopy is predominantly agroforestry grown for biofuel, other forest
products and ecosystem services. These trees are grown in rotation with or in and around crops
(ERMA, 2021). In theory, cyclical deforestation is to be expected when trees are ready to be
harvested, however, in practice, forest stocks (volume of wood) are extremely low from overuse
and are often harvested too early (ERMA, 2021). More so, Rwanda is coming back from severe
land degradation, and has pledged to rehabilitate 2 million hectares of land by 2030 (82% of land
area) (ERMA, 2021). In the current context, a decrease in deforestation could be an indication
of forests growing more efficiently. See section A Forest use in Rwanda for additional context
relevant to deforestation outcomes.

Rwanda sees two rainy seasons between September to November and March to May, with
a long dry season from June to August. Each rainy season, corresponds to the start of an
agricultural season, though not all farmers squeeze in two seasons each year. Season A goes
from September to February and Season B from March to June. The Western and Northern
provinces have trended towards heavier precipitation events over the last 30 years, potentially
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due to climate change. When coupled with recent deforestation and poor agricultural practices,
heavy rainfall has led to the destruction of infrastructure such as buildings and bridges, as well
as the loss of lives and crops (ERMA, 2021).

Beyond flood events, many Rwandan communities rely on inadequate bridges that are by
design not functional throughout the year. Most common are timber bridges made of round
logs laid next to each other with gaps in between, which are regularly overtopped or washed
away during the rainy seasons. Even when in place many are unsafe to cross when waters are
high (Shirley et al., 2021). Because over 83% percent of Rwandans live in rural areas and are
reliant on walking for part of most trips (NISR, 2022), there is a major need for trailbridges to
safely navigate Rwanda’s infamous hilly terrain. Shirley et al. (2021) identified over 1400 sites in
Rwanda appropriate for the placement of an all weather bridge, of which only 3% had existing
all-weather bridges. Given Rwanda’s size, this is approximately 1 bridge per every 17 square
kilometers. Most of these crossings are over narrow streams where a small culvert bridge of 10
to 20 meters is sufficient, but over 20% of sites are in need of a substantial long cable bridge,
such as the types B2P constructs.

When river flooding overwhelms current haphazard bridges, rural Rwandans are faced with
substantial addition in travel times to schools, markets, healthcare services, and employment
(Thomas et al., 2021), potentially fatal stream crossings, or a reduction in trips.

1.3 Background: Intervention

In order to provide reliable year round connections for remote villages, B2P in cooperation with
the national and district governments has constructed 180 high-quality trailbridges in Rwanda
from 2008 to 2023, primarily in the wetter and steeper western side of the country. After
completion, each trail bridge becomes the property of the government of Rwanda with district
governments providing maintenance. Until 2019, the identification of potential B2P trailbridge
sites was ad hoc, but consistent in that the selection of trailbridges was determined through
the reporting of sites without safe water crossings from residents and officials. From 2019, B2P
chose sites from the 186 locations identified in the national needs assessments by Shirley et al.
(2021), however construction timing remains ad-hoc for some of these. From 2021, 136 bridges
are being built in a randomized order at the district level; see Macharia et al. (2022) for further
discussion of the randomization process.

I look at bridges both before and after randomization to study treatment effects over a longer
time horizon, and to validate effects found from the non-randomized construction with similar
estimates from the randomized 1. This study includes 267 sites that are either already completed,
assessed by B2P to be in need of a suspension, suspended, or hybrid B2P type bridge, or included
in the RCT. Figure 1 shows the location of all sites in Rwanda in the sample.

B2P had two standard designs for bridges to cut engineering costs and times. Suspended
trailbridges hang from two foundations and require high (but accessible) sides for the necessary
clearance. In flat areas, suspension bridges are needed. Their towers raise the cable on which the
footpath is suspended, but the towers also need space for anchors on either end. A site might be
technically rejected because one side is flat and the other elevated. In 2021, B2P incorporated
into their standards a hybrid design, half suspended and half suspension, making it more feasible
to connect a hill to a floodplain.

1I was aware of B2P randomizing some bridges in Rwanda starting in 2020, but was not aware of the details
until Macharia et al. (2022) published their pre-analysis plan. Additionally, the two studies are looking at different
outcomes with different units of observations over different time periods. I will incorporate additional randomized
later-treated cohorts as data becomes available.
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Figure 1: B2P’s Water Crossing Sites in Rwanda by Status

Year label indicates time range trailbridge construction was completed. Rejected are sites deemed technically or socially infeasible
for a trailbridge. Cancelled bridges were confirmed but then cancelled. Not yet assessed are sites that are identified from the national
needs assessment, but a decision on bridge suitability has not yet been made through an assessment. Confirmed are agreed upon
between the government and B2P but are not yet under construction. Graphic compiled by author. Bridge location and status data
provided by B2P. Rwandan political boundaries provided by GLAD.

2 Data

2.1 Bridge Data and Sample Selection

B2P tracks the status and location of each trailbridge site they have identified. If a site was
eventually rejected, the reason for the rejection is recorded. Forty-three are rejected on technical
grounds; the site is not appropriate for a standard B2P design. Eight were rejected for social
reasons, for example the village preferred to wait for the construction of a vehicle bridge, or there
was a failure to secure local funding. The specific rejection reason for three sites is not recorded.
In addition, B2P tracks bridge type (which is determined by topographical constraints), as well
as bridge span, estimated number of individuals served and completion date.

To focus on rural areas with significant canopy cover and an agricultural economy, as well
as avoiding trends in night light and population movement driven by suburban expansion, I
exclude sites that fall within the urban area of Kigali. Outside of the Kigali urban area, other
bridge sites are predominantly rural and include only small built up areas. However, there are
two peri-urban sites in Rubavu. According to FAO WaPOR land cover classification database,
which reports the primary use of pixels at a 100m × 100m resolution, the median village adjacent
to a trailbridge sites has zero built-up pixels, while the maximum has 11% (GFCD, 2015).

Figure 2 imposes the boundaries of villages adjacent to trailbridge sites over a mapping
of land cover classification data in Rwanda, including built-up pixels. Black outlined villages
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Figure 2: Land Cover and Bridge-Site Adjacent Villages

Shows boundaries of villages adjacent to B2P trailbridge sites. Black villages are completed or confirmed bridges. Blue villages
are bridges assessed by B2P engineers to be in need of a B2P standard type bridge, or are included in the RCT. Red villages are
identified sites that have not yet been assessed by BDP and are excluded from the sample for most specifications. Graphic compiled
by author. FAO WaPOR Land Cover Classification data shows primary land use at 100m × 100m resolution. Rwandan political
boundaries provided by GLAD.

have completed or confirmed trailbridges. The distribution of these treated villages falls along
Rwanda’s steeper western half with high population densities and where montane forest was
converted to intensively cultivated cropland. While not visible in Figure 2 as small forest plan-
tations are grown in land primarily used for crops, the belt along which the bridges are built
(the central plateau and Congo Nile Crest) is the center of Rwanda’s forest plantations (ERMA,
2021).

The blue outlined villages are not-yet or never-treated villages included in the sample for
the main specifications. The red outlined villages are identified sites that have not yet been
assessed by BDP and are not in the RCT. They are excluded from the sample from the preferred
specification, in order to compare across sites with treatment dates as close as possible, but
results are robust to their inclusion.

2.2 Village Boundaries

Data on political boundaries in Rwanda is provided by the Database of Global Administrative
Areas (Hijmans, 2015). I use the fifth and smallest level of administration (the village level)
as a unit of analysis for aggregating spatial statistics, such as yearly village-deforestation. The
boundaries of villages often reflect topographical constraints such as streams, ravines, hills and
mountains that physically restrict the movement of inhabitants. All completed trailbridges can
be found at the perimeter of two or more villages, so village boundaries are the obstacles for the
bridges to overcome. Using village boundaries as the unit of observation in an analysis concerning
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spatial outcomes and spillovers is advantageous because the boundaries are meaningful in terms
of geography, infrastructure and political and social networks with-in. Figure 2 illustrates the
outlines of the villages included in the study sample.

2.3 Forest Data

Forest cover data is provided by the Global Forest Change Database 1.9 (GFCD henceforth),
which reports percentage canopy cover for the year 2000 and deforestation from 2001 to 2021
(Hansen et al., 2013; GFCD, 2022). The data is reported at the pixel level, captured by Landsat
satellites with 1 arc-second resolution. At the near equatorial latitudes of Rwanda, pixels are
approximately 30m × 30m, or 900m2. Canopy is defined as vegetation over 5m in height and
deforestation is reported as the year of deforestation event, i.e., a complete removal of all canopy
in a pixel (Hansen et al., 2013).

For deforestation outcomes, I calculate the area of pixels that underwent a deforestation
event weighted by the percentage canopy cover of the pixels in 2000, divided by the village area
weighted by percentage canopy in 2000. For brevity, I refer to this as percentage deforestation
of canopy, though it is not strictly correct as any deforestation of canopy in pixels where some
canopy remains is not reported. Therefore, for any given year the estimate could under or over
report relative to the actual amount of deforestation of the canopy. See figure X for a depiction
of average deforestation over time by treatment status and how the normalization by canopy
area affects the trends.

The areas surrounding future B2P sites are modestly forested, but primarily agricultural.
FAO WaPOR land cover classification data reports the median village is 80% agricultural pixels.
See figure 2 for an illustration of villages by FAO land cover classification. The median canopy
cover of villages adjacent to bridge sites is 19% . The canopy is spread throughout the village
area. The median village, 88% of pixels have at least 10% canopy cover. This dispersion is
consistent with small woodlots and other agroforestry methods practiced by small farmholders
in Rwanda (especially in the densely populated Central Plateau region (Mukuralinda et al.,
2016)), as well as the occasionally larger institutional or public forest plantation. A handful of
villages include sizable amounts of national parks with tropical montane rainforest. These areas
differ in forest use, as the national parks are either protected entirely, or in the case of Nyungwe
National Park has a buffer zone. This zone has since 2010 been under de jure management
by the Rwanda National Forestry Authority for sustainable forest production and mitigation of
impact of local communities (Gross-Camp et al., 2015).

Starting in 2013 GFCD improved their algorithms for deforestation detection. 2010 and 2011
data were revised with a worldwide 6% increase, but the jump in detection from 2013 onwards
in much larger due to better sensors on satellites, creating non-linear discontinuities in the time
series.The improvements were particularly better at detecting smaller scale changes, such as
loss due to fires, selective logging and shifting agriculture (GFCD, 2022). This improvement is
especially relevant in the case of Rwanda, where small woodlots and other agroforestry canopy
is integrated sparsely throughout the study area.

See figure B.1 for illustration of deforestation between 2001 and 2021 in regions of B2P
construction activity. Deforestation is most severe along the edges of the remaining heavily
forested areas, but there is also deforestation distributed evenly throughout the study area
which is predominately cropland. This is to be expected with the agroforestry practices of the
land use systems in the Western and Northern parts of Rwanda (Mukuralinda et al., 2016).

2.4 Night Time Light Data

The NTL outcome analyzed is village radiant intensity in mW/SR. Annual NTL data from 2012-
2022 is provided by the Earth Observation Group from the Visible and Infrared Imaging Suite
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(VIIRS) (EOG, 2022). The annual time series is derived from a monthly aggregation of nightly
data, and undergoes steps to correct for stray light, cloud masking, sunlit and moonlit pixels,
and outliers driven by events like wildfires (Elvidge et al., 2021). The resolution of VIIRS NTL
data is 15 arc seconds, or approximately 500m × 500m in Rwanda.

VIIRS resolution is 45 times smaller than the previous NTL data series, DMSP, and has
superior low light imaging collection capabilities. These factors preclude including years earlier
than 2012 with DMSP data. The sample villages are relatively small and dark. The median
village in terms of area is slightly smaller than just 5 pixels of VIIRS data. For brightness, the
Province of Kigali (which includes considerable rural areas) increased in radiance from 1.7 to
4.1 nW/cm2/sr from 2012 to 2021. In contrast, the median radiance across all years of village
clusters was 0.17 nW/cm2/sr.

See Figure B.2 for an illustration of trends in NTL in the study area. Over the study
period, the spatial spillover of ambient NTL from from brightening cities and towns is increasing.
Ambient light from cities can be brighter than the median village in the sample. Because village
treatment status and timing may not be independent of these spillovers, it is important to
account for any differential trends due to location in estimation.

Stepping back from Rwanda, the relationship between rural economic activity and population
density with NTL is a developing topic, especially for low-income countries. Gibson et al.
(2021) advise “great caution” when using NTL data for studying low density rural areas, finding
that even VIIRS was not a suitable measurement for GDP outside of cities in the context of
Indonesia. However, Pérez-Sindín, Chen, and Prishchepov (Pérez-Sindín et al.) found VIIRS
NTL data capable of detecting long-term patterns of socioeconomic change for municipalities
in Colombia, the second level of administrative units. They found that VIIRS data predicted
regional domestic product (RDP) with an R2 of .309 for rural municipalities with populations
under 5,000, compared to .873 in cities over 500,000. They even found NTL predicted RDP
in areas with population density as low as 31 persons per km2, but found poor performance in
regions with heavy canopy obscuring lights. Rwanda, in contrast, is not heavily forested (as
discussed earlier) and has a high population density even in rural regions, but Rwandan villages,
at the fifth administrative unit, are much smaller than Colombian municipalities.

2.5 Population Data

The population outcome of interest is the log of estimated population. WorldPop (2022) provides
an annual gridded population distribution dataset at a 100m × 100m resolution from 2000-2020,
based on the methods from Lloyd et al. (2019). Census data from 2012, in this case at the third
“sector” level (two levels above village), is disaggregated with a flexible random forest estimation
technique (Stevens et al., 2015). Multiple geospatial datasets on topography, infrastructure,
buildings, waterways, climate, NTL, and land-cover classification create a prediction layer which
is used as weights for the dasymetric redistribution of aggregated census counts.

The accuracy of the estimation is dependent on the age, accuracy and aggregation of the
input data. For Rwanda the census data is from 2012 and the disaggregation is only at the
sector level. One time varying input of the WorldPop data is VIIRS NTL data, which this study
independently examines.

Figure B.3 shows change in population by hectare for the area of Rwanda including the
sample sites. Spatial spillovers from cities appear smaller than from NTL. Highways do not
stand out like they do in the NTL data, and their are pockets of large rural population increase
such as north of Nyanza and around Byumba that are less prominent in NTL data. The R2 of
regressing estimated population on NTL is 0.17, so clearly estimated population is not simply
NTL data repackaged one for one.
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3 Empirical strategy

3.1 Spatial Specifications for Analysis

In order to measure the treatment effect of a trailbridge it is necessary to choose the area over
which to aggregate spatial statistics. Because bridges are built at the site of topographical
constraints and not at the center of treated communities, too narrow a bandwidth and there
is a risk the treated community falls outside. Too wide a bandwidth could include areas that
are only marginally effected by a trailbridge or not at all if the area is on the other side of a
boundary like a rivers or a hill. Including much untreated area would make it harder to detect
a treatment effect as the effect will be mechanically smaller (averaged over a larger area) and
there will also be more statistical noise.

The main specification aggregates spatial data at the village level. Analysis of adjacent
villages takes into account meaningful geographic constraints and the social and spatial ties
that led to that area being designated an administrative entity. I first looks at the average
effect for all villages on either sides of the bridge, regardless of intent to treat. Then, I perform
heterogeneity analysis, comparing by each bridge villages furthest and closest to all-weather
roads. However, village observations vary in area and distance from the bridge site. Analysis
of buffer zones ensure observations are consistent in area, but are insensitive to boundaries or
differences in settlement patterns. More so, by definition buffers span both sides of the bridge.
The choice of a buffer with a 1km radius was chosen in rough equivalence to the median area
of a bridge-adjacent village at 1.19km2. Since the median bridge site is placed adjacent to three
villages, the 1km radius captures a large portion of adjacent villages in all directions.

Figure 3: Spatial Specifications for Analysis

Black outlines illustrate villages over which spatial statistics are aggregated. Light gray lines show sorrounding village boundaries
not included in the sample. The bridge site is demarcated by a blue dot. A radius of 150m from the bridge is displayed with a dark
gray circle. Deforestation provided for illustration; data from GFCD. Rwandan political boundaries provided by GLAD.

Figure 3 illustrates an example bridge site and how the units of observations are determined
for the village specification. The black outlined shapes show the boundaries villages, while the
light gray fill shows what areas are included in aggregating spatial statistics. Yearly deforestation
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is displayed as an example. Villages adjacent to the bridge site (with borders within 150m) are
included in the analysis. Spatial statistics are aggregated for each village. If a village is adjacent
to two sites, treatment is defined by the year of completion of the first bridge. In some years, a
never-treated or not-yet-treated site-adjacent village borders a treated village, which may allow
some spatial spillovers, depending on the topography.

3.2 Identification Strategy

To analyze treatment effects, I use variation in treatment timing, also know as a staggard
rollout. Standard two-way fixed-effects estimators can be biased with staggard treatment timing
and heterogeneous effects (Goodman-Bacon, 2021). Given the wide range of factors that could
dynamically effect treatment intensity across trailbridge site such as remaining forest canopy,
population growth and village area, it is credible those conditions apply. Therefore, I use a
robust event-study estimator by Borusyak et al. (2021) that still accounts for unit (village or
buffer) and period (year) fixed effects, and can incorporate unit linear or polynomial time trends.
These effects control for confounders that are either relatively stable across time (e.g., village
culture and leadership, canopy cover, distance to market) or space (e.g., weather, technology,
population growth, national policies). Allowing unit or district specific trends can control for
differential trends across trailbridges (e.g., varied population growth, suburban expansion), but
requires specifying a correct functional form.

Borusyak et al. (2021) show estimates are unbiased if parallel trends hold across units and
there is no anticipation of treatment effects. Anticipation effects in this context would seem
unlikely or marginal as trail-bridges are non-fungible, and because bridges provide a physical
service it is hard to benefit from it before it is built. However, B2P does employs local labor
in the construction of the bridge, which could substitute for agricultural labor for some. In
addition, individuals might accept temporary longer commute to work in the case of a flood if
they know a bridge will come soon, effecting labor market decisions. Because these potential
anticipation effects work through the same mechanisms as theoretical bridge effects, they would
bias effects towards 0.

The assumption of parallel trends is the most crucial in the context of this sample. Only
half of the sample is being built in a randomized order, and only from 2021 onwards. Our
identification strategy assumes that village-specific treatment timing is exogenous to outcomes
conditional on village and period fixed effects. This is plausible as bridge construction timing
was largely determined by factors such as terrain difficulty, proximity to other B2P sites, and
eager district government officials. If B2P non-random selection was correlated with changing
trends in outcomes (e.g., faster developing areas were priortized) this would bias results, but this
does not seem to be the case. In more technical terms, sufficient conditions for the assumption
to hold are that the selection mechanism is independent from village-time-varying unobservables
and that village-time-varying unobservables that affect outcomes have a constant mean over time
conditional on village-level time-invariant unobservables (Ghanem et al., 2022). Most bridges
built after 2021 were built in a randomized order within district, but have less years of outcome
data.

The data are annual time series, so treatment start is defined as the rounded year of bridge
completion, i.e. a bridge completed before September is considered treated that year, and
September onwards is considered treated next year. More than half of bridges constructed in
the latter half the calendar year were completed in November and December, and Rwanda’s
planting season begins in September with harvests in January and June. Because the rural
Rwandan economy is primarily agricultural, I expect outcomes from trailbridges to be noticeable
during or after harvest. Additionally, deforestation occurring late in the year is often attributed
to the next year, especially in cloudy regions with few quality satellite photos like Rwanda once
the rainy season starts in December (Potapov and Weissee, 2022).
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I assume outcomes in each village or buffer period are described by

outcomeit = αi + βt + γit + τitdit + εit, (1)

where outcomeit is either percentage deforestation, log total population or total NTL radi-
ance, αi is a village fixed effect, βt is a year fixed effect, and γt is a (sometimes included) village
or district time trend that can be linear or polynomial. Treatment is designated by dit, a village-
year indicator, and τit is the village-year-specific treatment effect. The error term, εit, captures
yearly-village random variation in the observed outcomes that is unrelated to treatment, e.g.,
measurement error due to clouds or wildfires started by lightening.

Conditional expectations of treatment effects τit can be estimated for different estimands
of interests. These estimands could vary over time, (e.g., the average treatment effect across
all post-treatment months E[τit] or the average treatment effect within 2 years of trail bridge
completetion year ci, E[τit|t ≤ ci + 1]) or over space (e.g., the average treatment effect weighted
by village area).

I take the natural logarithm of population, which has several benefits. Effect sizes are likely
relative to disparate baseline levels, and the estimates can be interpreted as semi-elasticities, i.e.,
the percentage increase in population due to trailbridge construction. Deforestation outcomes,
which are predominately 0, are normalized by dividing by village, forested pixels or canopy area,
and can be interpreted as yearly percentage increases in levels or summed for aggregate effects.
NTL radiance is calculated from the sum of radiance aggregated across the observational area.

Standard errors are clustered at the adjacent trailbridge site level, which can include multi-
ple trailbridges if they have bordering villages. For estimation of residuals, I assume constant
treatment effects within cohorts, defined by construction completion date into six similar sized
group. Standard-errors are computed using a leave-out procedure. In principal, imposing con-
stant treatment effects over larger groups leads to more conservative inference (Borusyak et al.,
2021).

4 Results

4.1 Night Time Light

Table 1, column 1 reports the average treatment effect across all treated village-years. The sum
of village NTL radiance increased on average by 0.51±0.26% (mean estimate ± std. error). The
effect is rather large compared to mean pre-treatment, but over the study period the sample
grew much brighter. Column 2 is the preferred specification, which incorporates linear-unit time
trends. The estimate is more precisely estimated as 0.47±0.18%. Treated villages before 2013 are
dropped in order to estimate trends. Unlike cluster-time trends that use data points (untreated
observations) in their calculation, unit trends are extrapolated from just the untreated periods
of the unit. In this case, the maximum number of post-treated periods is 6, so the assumption
of continuous linear trends is not extended very far.

Column 3 only includes villages outside of the RCT so not built in a randomized order. The
estimate, 0.54 ± 0.17%, is similar to the estimate for the entire sample. On the other hand,
Column 4, which only includes villages in the RCT, finds no effect 0.00 ± 0.14%. This makes
sense, as theory would suggest treatment effects would grow with time as incomes are converted
to goods that emit lights. There are currently only two years of randomization data for night
time light data, and I will update the results with new data for 2023 when available.

Figure 4 provides evidence that there is a gradual onset of the treatment effect for night
time light. Effects for villages for both randomized and non-randomized bridges are similar for
the first two years. However, as the results are both close to zero, this does not inspire much
confidence in the integrity of the larger estimates for period 3 onwards of the non-randomized
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Table 1: Estimated Treatment Effects for Radiant Intensity in mW/SR

(1) (2) (3) (4)

NTL sum

NTL sum
linear village
time trends

NTL sum. linear
village time trends
non-randomized

NTL sum, linear
village time trends

randomized
Treatment-estimate 0.51** 0.47*** 0.54*** -0.00

(0.26) (0.18) (0.17) (0.14)
Pretrend-1 -0.08 -0.09 -0.09 0.09

(0.15) (0.10) (0.10) (0.15)
Mean pre-treatment 3.02 3.02 3.02 4.58
Treated obs. 1095 1095 952 143
Total obs. 7282 7282 7139 2016
Treated villages 297 297 190 107
Total villages 662 662 662 336
Treated bridges 113 113 73 40
Total bridges 266 266 266 136
Year from 2012 2012 2012 2017
Year to 2022 2022 2022 2022

Notes: * p<0.1, ** p<0.05, *** p<0.01. Col. 1–4 include controls sites either rejected after further assessment
by B2P engineers, currently confirmed for construction, or in the RCT. Col. 1–4 estimate effects on village area
sum of night time light radiant intensity in mW/SR. Standard errors are in parentheses. The standard errors
are computed using the leave-out procedure recommended in Borusyak et al. (2021). Cohorts are constructed by
combining treatment years from 2008 onwards so that each cohort has at least 15 bridges. All estimates account
for year fixed effects and village fixed effects. Col. 2–4 additionally account for unit-linear time trends. One large
outlier (a national park forest lit by highway lights), is dropped from all columns.

data. Instead, the pre-trend coefficients provide evidence of parallel trends holding between
controls and treated, at least for before the onset of treatment.

In this instance the OLS/TWFE results are similar to the Borusyak et al. estimates with
linear time trends, but have smaller standard errors.

The results are robust to taking the log of NTL radiant intensity plus 0.1, which transforms
the data so the yearly mean increases linearly instead of exponentially. The resulting coefficient
equates approximately to a 20-25% increase for a median village post treatment. The results
are similarly robust to taking the square root of village radiant intensity, or dividing by village
estimated population.

4.2 Estimated Population

Table 2 reports estimated treatment effect on remotely-sensed village population. Column 1
reports estimates using (perhaps naively) just village and year fixed effects, and estimates an
increase of approximately 2% averaging across all treated village-year observations. In column
1 the panel begins in 2012 in order to minimize the number of years the assumption of parallel
trends most hold, but three villages adjacent to one bridge built in 2008 must be dropped.
As populations are relatively stable, estimated village fixed effects using just one period are
relatively more accurate than for nosier outcomes like deforestation.

Column 2 is the preferred specification, incorporating linear village time trends, which can,
if modeled correctly, correct for confounding trends. The panel is extended backwards in order
to accurately calculate parallel trends. Starting the panel too early risks missing more recent
changes in trends, while starting the panel too late risks over-fitting on fluctuations between
years. The estimated population variable appears to have considerable noise, relative to the
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Figure 4: Yearly Treatment Effects on Night Time Light Radiant Intensity and Pretrends
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Effect on night time radiant intensity

+village linear time trends indicates inclusion of linear-village time trends. The 95% confidence intervals are indicated by bars. Stan-
dard errors are clustered at the bridge site-cluster level and are computed using the recommended leave-out procedure recommended.
Cohorts are grouped by their trailbridge construction date. Estimates account for year fixed effects and village fixed effects.

effect size. I choose 2007, but the results are robust to starting the panel between 2000 and
2011. The estimated population increase across all treated observations is 0.034 ± 0.013%.
Because the population data currently ends in 2020, I can not estimate the effect on the part of
the sample in the RCT, since those are constructed from 2021 onwards.

Figure 5 shows yearly treatment effects and pretrends on log population. Like night time
light, the effect grows with time. Pre-trends provide evidence of parallel trends between treated
and control villages holding for another variable (population growth), at least for the period
before treatment onset.

4.3 Deforestation Outcomes

Table 1, column 1 reports the average treatment effect across all treated village-years. The area
of deforestation as a percent of village canopy decreased on average by −0.17%± 0.07%. To put
the trailbridge programs aggregate estimated effect into perspective, the median village has 30
hectares of canopy, so the effect size implies a decrease in canopy loss of 510m2 yearly. Relative
to the pre-treatment mean of yearly deforestation, this is an approximate 46% decrease.

Because of discontinuities in the GFCD time series, and to minimize the number of years the
assumption parallel trends needs to hold over, columns 1 and 2 begin the panel in 2011.

Column 1 includes all treated observations, and uses year and bridge-cluster site fixed effects.
The specification uses interacted year and district2 fixed effects to capture variation in common

2In five instances there were no controls remaining in a district, so those districts were combined with the
nearest neighboring district based off the location of the bridges. The district with the most sites that was
combined had only 5 bridges.
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Table 2: Estimated Treatment Effects for Estimated Population, Village Specification

(1) (2)

Log population
Log population

linear time trends
All-treated-years 0.021 0.034**

(0.015) (0.013)
Pretrend-1 0.003 0.001

(0.007) (0.004)
Mean pre-treatment 6.55 6.50
Treated obs. 630 654
Total obs. 6066 9464
Treated villages 187 189
Total villages 674 676
Treated bridges 71 72
Total bridges 270 271
Year from 2012 2007
Year to 2020 2020

Notes: * p<0.1, ** p<0.05, *** p<0.01. Col. 1–2 and 4 display numbers that are untransformed coefficient
estimates from a log-linear specification. All columns rely on as controls sites that were rejected only after
further assessment by B2P engineers. Col. 1–2 and 4 estimate effects on the log of village estimated population,
col. 3 on the village population, and col. 5 on yearly changes in population. Standard errors are in parentheses.
The event-study’s standard errors allow for clustering of the model error at the site cluster level and are computed
using the leave-out procedure recommended in Borusyak et al. (2021). Cohorts are grouped by their two years
trailbridge construction window, except 2015 and before are grouped as one. All estimates account for year fixed
effects and village fixed effects. Time trends are calculated at the village level.

Table 3: Estimated Treatment Effects for Percent Canopy Deforested

(1) (2) (3) (4)

%-canopy deforested
Main sample

year#district FEs

%-canopy deforested
Non-randomized
year#district FEs

%-canopy deforested
Randomized

year#bundled-
district FEs

%-canopy deforested
Randomized

year and district FEs
Treatment-estimate -0.17*** -0.19*** -0.31** -0.18

(0.07) (0.07) (0.16) (0.13)
Pretrend-1 0.01 0.01 -0.01 0.16

(0.06) (0.06) (0.12) (0.13)
Mean pre-treatment 0.37 0.37 0.40 0.40
Treated obs. 1181 1038 143 143
Total obs. 8088 7945 1348 1348
Treated villages 306 199 107 107
Total villages 674 674 337 337
Treated bridges 116 76 40 40
Total bridges 270 270 136 136
Year from 2011 2011 2019 2019
Year to 2022 2022 2022 2022

Notes: * p<0.1, ** p<0.05, *** p<0.01. Col. 1–2 include controls sites either rejected after further assessment
by B2P engineers, currently confirmed for construction, or in the RCT. Col. 3–4 only use sites in the RCT as
controls. Col. 1–4 estimate effects on yearly percent canopy cover deforested, calculated as the yearly village
area deforested weighted by percent canopy cover of the deforested pixels in 2000 and divided by total village
area forested in 2000. Standard errors are in parentheses. The standard errors are computed using the leave-out
procedure recommended in Borusyak et al. (2021). Cohorts are constructed by trailbridge construction date so
that each cohort has at least 15 bridges. Col. 1–3 account for year fixed effects, bridge cluster fixed effects, and
interacted year and district fixed effects. Col. 4 controls for year and district fixed effects.
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Figure 5: Yearly Treatment Effects on Log Population and Pretrends, Comparing Time Trends

-2

0

2

4

6

8

10

12

14
%

-in
cr

ea
se

 in
 p

op
ul

at
io

n

-5 -4 -3 -2 -1 0 1 2 3 4 5
Years since bridge construction

Borusyak et al.: Village and year FEs + village linear time trends
OLS/TWFE: Village and year FEs + village linear time trends

Effect on total population

Linear time trends are estimated at the village level. Estimates derived from a panel spanning 2007-2022. The 95% confidence intervals
are indicated by bars. Standard errors are clustered at the bridge site-cluster level and are computed using the recommended leave-
out procedure recommended. Cohorts are grouped by their trailbridge construction date. Estimates account for year fixed effects
and village fixed effects.

in time for spatially proximate sites not shared across the country, such as wildfires, drought,
or expanding local towns. If any of those spatial confounders were correlated with treatment
assignment, uncontrolled results could be biased. Column 2 narrows the set down to treated
observations that were not part of the RCT and reports a similar estimate, which is not a
surpise as the samples are not much different. Column 3 only includes treated observations
taking part in the RCT and estimates a larger impact −0.31%± 0.16%. Column 3 also includes
interacted year and district fixed effects, but because of the smaller set of controls I bundle the
original 20 districts into 5 based on the proximity of the bridges. Column 4 shows a parsimonious
specification, dropping bridge-cluster fixed effects entirely and replacing them with a much larger
unit of aggregation, the district. In theory this is the minimum identifying specification, based on
the knowledge that the bridges were randomized within district. However, the large pre-trend
estimate reveals that there may be something amiss. While randomization was randomized
within district, rollout of construction by district is not random, as B2P needs the cooperation
of sometimes otherwise engaged district officials. A difference in deforestation trends across
districts would bias results. Column 3, which can flexible account for spatial trends by bundles
of neighboring districts, appears to outperform column 4 when using pretrends as a metric.

District-year fixed effects capture more granular covariation in time, without making assump-
tions about covariation across periods, such as village- or district-time trends. I avoid unit-time
trends all together because they overfit the deforestation data, either predicting highly negative
or positive trends or none at all. Secondly, projecting linear trends across the non-linear change
in outcomes in 2011 and, especially, 2013, seems, a priori, a bad fit of the data generating pro-
cess even if time-fixed effects soak up part of the shift. However, in practice, including either
linear or quadratic cluster-time trends produces a similar result to Column 2 (not shown), with
estimated cluster-time trends not so different from each other.
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Spatially enlarging the pool of observations for calculating unit fixed effects could increase
accuracy, but at the cost of assuming that deforestation patterns of a village are alike between
spatially proximate villages. Replacing trailbridge-cluster site fixed effects with smaller and
larger units of aggregation like village, or district makes only marginal difference in estimates
(not shown). Removing unit fixed effects entirely only modestly decreases the coefficient and
significance (result not shown). Having only year fixed effects tightens the parallel assumption
to identical-in-levels, which given the similarity in outcomes before treatment (see Figure X), is
not entirely implausible.

Unit fixed effects for treated villages are derived from only pre-treatment observations. Be-
cause there is a large jump in deforestation in 2013, village fixed effects for treated observations
are biased downwards commiserate with the number of pre-treatment periods from before 2013
included. Theoretically, this should not bias the treatment effect with parallel trends because the
systematic over and under estimation balances out, but it could increase standard errors. The
similarity of column 2 and 8 indicate unit fixed effects barely effect outcomes, so underestimated
village fixed effects for the treated are likely not a concern.

This paper has presented a number of different estimation models relaxing parallel trends
(e.g., cluster time trends, cluster-year fixed effects) and strengthening assumptions such removing
village fixed effects (balanced in outcome levels), and found consistent estimates on percent
canopy deforested yearly; around 0.17 for the entire sample and pre-RCT sites and slightly
higher, 0.3, for the RCT sites. The continuity between these models suggests that the parallel
trends condition holds, and even the far more stringent balanced-in-levels assumption is plausible.

Estimating pre-trend coefficients can also provide evidence of parallel trends. Figure X is an
event plot showing estimated treatment effects for each year both after and before treatment.
Standard OLS/TWFE estimates and the robust difference-in-differences BSJ estimator. The
estimators show qualitatively similar results, but yearly treatment effects are larger for the BSJ
estimator. This can be partially explained by normalizing the estimates to period -1 for the
OLS/TWFE models, which could bias estimates due to anticipation effects or random noise
in that period. The difference between OLS results and the BSJ estimator, and the generally
increasing estimates with time, suggest that there are dynamic treatment effects.

The pre-trend coefficients provide additional evidence of parallel trends for another variable.

5 Heterogeneity Analysis
Until now, all specifications estimated treatment effects with villages or pixels from both sides of
the bridge, aggregating the effects of being on the close side or the far side of the bridge together.
In some cases, bridges are clearly of equal importance in both directions, e.g., connecting a
health clinic on one side to a school and market on the other. In other cases, one side is clearly
disconnected, while the other is well integrated into a major road system.

Table 4 shows treatment effects for villages by bridge site which are furthest and closest to
an all-weather road. The distance is measured from a point 100m away from the bridge location
towards the centroid of the village polygon. What is fascinating, is that the bridges were built
with the intention of treating more remote villages, but the effect on villages on the near side of
the bridge are equivalent to the remote villages.

6 Discussion
Treatment effects should be considered intent-to-treat. While compliance with a bridge is hard
to avoid, there are three trailbridges that went out of service, only one of which was replaced
by B2P. Additionally, trailbridges might be placed in a location that is not convenient for all
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Table 4: Heterogeneity by Distance to an All-Weather Road

(1) (2) (3)
Night time

radiant intensity
Log of

total population
% canopy

cover deforested
Far-Village 0.61*** 0.03*** -0.18***

(0.17) (0.01) (0.07)
Close-Village 0.55*** 0.04*** -0.18***

(0.20) (0.01) (0.07)
Difference 0.06 -0.01 0.00

(0.19) (0.01) (0.06)
Pretrend-1 -0.09 0.00 0.00

(0.10) (0.00) (0.06)
Mean pre-treatment 3.03 6.50 0.37
Treated obs. 802 497 868
Total obs. 6879 9148 7655
Treated villages 218 142 225
Total villages 652 666 664
Treated bridges 112 72 115
Total bridges 262 267 266
Year from 2012 2007 2011
Year to 2022 2020 2022

Notes:
Notes: * p<0.1, ** p<0.05, *** p<0.01. Col. 1–3 include controls sites either rejected after further assessment
by B2P engineers, currently confirmed for construction, or in the RCT. Standard errors are in parentheses. The
standard errors are computed using the leave-out procedure recommended in Borusyak et al. (2021). Cohorts
are constructed by combining treatment years from 2008 onwards so that each cohort has at least 15 bridges.
Col. 1–2 account for year and village fixed effects, as well as village linear time trends. Col. 3 accounts for bridge
cluster, year, and interacted district-year fixed effects.
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Figure 6: Yearly Treatment effects and Pretrends, Full Sample from 2011-2022
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Includes the main sample from 2011-2022. The 95% confidence intervals are indicated by bars. Standard errors are clustered at the
bridge site-cluster level and are computed using the recommended leave-out procedure. Cohorts are grouped by their trailbridge
construction date. Estimates account for year fixed effects and bridge-cluster site fixed effects.

village residents.
The findings should be interpreted as short to medium run effects, but not long. The number

of trailbridges with more than seven years of data is only thirteen. Additionally, the preferred
estimates of treatment effects on both population and night time light data relied on the assump-
tion of extended counterfactual trends, which grow less credible further away from treatment
start.

The decrease in deforestation and increase in night light (even when controlling for pop-
ulation) are in line with a theory of shifting labor practices, from agricultural to wage work.
Decreased demand for agricultural land would allow woodlots to grow for longer and more ef-
ficiently before being turned over for agricultural production. However, there are competing
theoretical mechanisms for the reduction. Perhaps villages are no longer forced to prematurely
harvest understocked woodlots for cooking fuel when floods had previously cut them off from
a substantial share of nearby wood sources. This would explain the decrease in deforestation
on both sides of the bridge. Expected decreases resulting from shifts in labor would be much
larger on just one side. Population increases reflect the increased desirability of living close to
the bridge as it dramatically increases the number of locations that can be easily reached by
foot. Increased night light could be caused by increased incomes of former residents, and also
by settlement of new residents and businesses now that the location is more desirable.

The estimated treatment effect for percent of canopy deforested is substantially driven by
modest to large sized yearly village deforestation occurrences. Appendix Table X shows no
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treatment effect on the likelihood of there being a deforestation event, so the decrease in de-
forestation is being driven by less large deforestation events when they do occur. Additional
heterogeneity analysis by percent canopy cover, preferably with newer data than 2000, is needed
to get a clearer picture of what type of forest land is being less deforested. Additional analysis
of forest growth could collaborate if deforestation reduction is driven by letting woodlots mature
more efficiently.

Extrapolating from survey findings in Nicaragua and Rwanda (Brooks and Donovan, 2020;
Thomas et al., 2021) that found bridges increased wage income and movement out of agriculture,
this paper contributes to the literature on the context specific income effects on deforestation in
rural developing countries. For example, unconditional cash transfers in Sierra Leone (increasing
income without employment) led to a crowding-in of the agricultural sector and an increase of
clearance of young growth (Wilebore et al., 2019). In Mexico, conditional cash transfers based
on child health and educational decisions led to increased deforestation in isolated areas. Raised
incomes increased demand for land-intensive goods, and where there was not market access,
households extended their ecological land-use footprint (Alix-Garcia et al., 2013). Lastly, in
Pakistan cash transfers shifted fuels sources away from forest products and towards modern
fuels (Nawaz and Iqbal, 2020). Taking these studies into context, perhaps the new year-round
connectedness to mature fuel sources and a shift in labor from agriculture result in less defor-
estation even when incomes and, assumedly, demand for land-intensive goods goes up.

At face value, the reduced deforestation results lead to the preservation of valuable ecosystem
services–a gross ecological benefit. For example, forests are a valuable asset in preventing erosion
in the hilly and increasingly, due to climate change, flooded Rwanda countryside. More than
70% of all land in four of the districts where B2P constructed bridges are at very high and
extreme risk of soil erosion (ERMA, 2021). However, general equilibrium effects can not be
ruled out. In net, if raised income increases demand for land-intensive goods, then the ecological
consequences could be shifted elsewhere. However, if the reduction in deforestation is caused by
more efficient forestry practices, then it is clearly a gain. Additionally, purchases of fuel or other
goods at now more-accessible markets would provide a net benefit if those goods are produced
more efficiently.

It has been well documented that rural roads and trunk roads lead to a shift towards nonfarm
employment, but a study focusing on rural roads in India found no effect on population, incomes
or assets (Asher and Novosad, 2020). Perhaps this can be explained by the fact that bridges
have a more profound impact on transportation times for foot traffic than roads. Roads without
additional transportation are at best a marginal improvement.

The positive results from the paper also put into question the funding priorities of many
developing country governments and international donors. Despite the predominance of foot
travel in the rural developing world and the relative affordability of non-motorized transport
infrastructure, only a fraction of investment goes to ensuring safe and efficient pedestrian routes
(Kim and Dumitrescu, 2010; Jennings, 2016).

Lastly, this paper contributes to the literature of using NTL data to detect development.
Making use of recent high-resolution and higher quality NTL data allows for novel comparisons
of relatively small and dark units of observations (rural villages in Rwanda) with only a modest
underlying change in income and population.

7 Extensions
In the future, this paper aims to incorporate, among other analysis, heterogeneity results of
treatment intention from B2P.

The increase in night time light is not calibrated to any income or wealth scale. Making that
connection would allow for a estimation of the monetary benefit of the project. Time-series of
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estimated wealth using remote sensing data at the scale needed are currently prohibitively ex-
pensive. There are other high resolution wealth datasets available for one period. The drawback
would be to assume that relations about wealth and night time light that hold across space also
hold across time.

Additionally, the deforestation analysis is currently one-sided. Incorporating data on af-
forestation or changes in tree density would provide collaborative evidence of a shift from agri-
culture or more efficient management of forest plantations. Lastly, incorporating detailed data
on land use and could provide insight into the mechanisms driving changes in deforestation.
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A Forest Use in Rwanda
Rwanda saw a rapid decline in its forests over the 20th century. FAO defined forest land, an area
of at least .5 hectares with 10% canopy cover, dropped from 25% of Rwanda’s territory in 1960
to 9% in 2007 (ERMA, 2009). Forests were replaced by terraced farm holdings, leaving Rwanda
the most densely populated non-island African country, with average household plot sizes of
just 0.76 hectares (Fatima and Yoshida, 2018). Since 2009 to 2021, deforestation trends have
turned around3. According to the government of Rwanda the total forest area increased by 5%,
equivalent to 1.4% of Rwanda’s land area (ERMA, 2021), however according to the FAO, who
have a more stringent definition of forest, their was just a 3% increase in forest.4 While there
was in net forest gain, 15.7% of existing forest cover was lost and there is serious degradation of
remaining forests and unprofessional management of new forest plantations. 24% of forest land is
less than 40% canopied (ERMA, 2021). There is still remaining pristine montane tropical forest
in national parks and reserves, but the growth in forest area has been driven by forest plantations
of eucalyptus, pine and other fast growing dry rainforest species, mostly where montane tropical
forests historically were. Plantations now account for 42% of all forest land in Rwanda, with
60% more plantation than remaining montane forest. 28% of plantations are in woodlots smaller
than 2 hectares (RoRMoE, 2019). Besides plantations, farmers practice agroforestry, especially
in the areas with denser population and smaller farm lots. Farmers intensively shift land between
agricultural, livestock and wood production, and they scatter trees around homes and crop fields,
as well as planting them along boundaries and terraces (Mukuralinda et al., 2016).

These plantations and other local trees supply Rwanda’s principal energy source, biomass.
97.4% of Rwandans rely on forests for cooking in 2016, accounting for 80% of the energy mix in
2018 (ERMA, 2021). There are ambitious goals to transition to propane gas (reducing biomass
use to 42%) and expand electricity access to the entire country, but estimated deficits in biofuel
production are projected until 2050 without even more policy interventions (ERMA, 2021).
Rwandans consumed twice as much wood as they produced in 2021. The results of the overuse
and lack of forestry knowledge is that even though forest area is increasing, there is “extremely low
forest productivity” (ERMA, 2021). The problem is most acute for small plantations managed
by households, where forest stocks (measure of growth area potential) are almost 10 times as
low compared to public or private institutional owners (ERMA, 2021). Over 28% of all canopy
is in plots of 2 hectares are less (RoRMoE, 2019). 26% of biofuel comes from agroforestry
sources and 43% from private sources (ERMA, 2021). While a handful of B2P trailbridges are
adjacent to areas of tropical montane forest, the vast majority of nearby canopy is located in
farm woodlots, contour hedgerows, boundary-planted trees, scattered trees in crop fields and
home gardens (Mukuralinda et al., 2016).
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Table B.5: Estimated Treatment Effects for Radiant Intensity in mW/SR, Different Specifica-
tions and Outcomes

(1) (2) (3) (4)
NTL sum

district time
trends

NTL sum by
10k pop, village

time trends

Square root
NTL sum

village time trends

Log + 0.1
NTL sum, linear

village time trends
Treatment-estimate 0.40** 4.81** 0.14** 0.25**

(0.20) (1.90) (0.06) (0.12)
Pretrend-1 -0.05 0.57 -0.02 -0.05

(0.13) (1.25) (0.03) (0.04)
Mean pre-treatment 3.01 36.94 1.51 0.57
Treated obs. 1175 1095 1095 1095
Total obs. 7370 7282 7282 7282
Treated villages 305 297 297 297
Total villages 670 662 662 662
Treated bridges 116 113 113 113
Total bridges 269 266 266 266
Year from 2012 2012 2012 2012
Year to 2022 2022 2022 2022
Notes: * p<0.1, ** p<0.05, *** p<0.01. Col. 1 includes as controls only completed or confirmed sites. Col. 2
adds to the main sample the unassessed villages identified in the needs assessment. Col. 3 adds to the main
sample one large village next to the Nyungwe Forest National Park and the recently illuminated highway RN6.
The standard errors are computed using the leave-out procedure recommended in Borusyak et al. (2021). Cohorts
are constructed by combining treatment years from 2008 onwards so that each cohort has at least 15 bridges. All
estimates account for year and village fixed effects, as well as unit-linear time trends.

Table B.6: Estimated Treatment Effects for Radiant Intensity in mW/SR, Different Samples

(1) (2) (3)
Complete or
Confirmed

Including
unassessed

Including large
forest village

Treatment-estimate 0.58*** 0.48*** 0.95*
(0.20) (0.18) (0.52)

Pretrend-1 -0.03 -0.10 -0.15
(0.11) (0.10) (0.12)

Mean pre-treatment 2.92 2.99 3.02
Treated obs. 1095 1095 1101
Total obs. 5082 7832 7293
Treated villages 297 297 298
Total villages 462 712 663
Treated bridges 113 113 113
Total bridges 182 289 266
Year from 2012 2012 2012
Year to 2022 2022 2022

Notes: * p<0.1, ** p<0.05, *** p<0.01. Col. 1–4 include controls sites either rejected after further assessment
by B2P engineers, currently confirmed for construction, or in the RCT. Col. 1 estimate effects on village area
sum of night time light radiant intensity in mW/SR. Col. 2–4 modify this by dividing by 10k population, taking
the square root, or the natural logarithm plus 0.1, respectively. The standard errors are computed using the
leave-out procedure recommended in Borusyak et al. (2021). Cohorts are constructed by combining treatment
years from 2008 onwards so that each cohort has at least 15 bridges. All estimates account for year fixed effects
and village fixed effects. Col. 2–4 additionally account for unit-linear time trends.
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Table B.7: Estimated Treatment Effects for Population Outcomes

(1) (2) (3)
Population first
difference, linear

time trends

Log population
linear time trends

just confirmed

Log population
linear time trends

non-assessed
Treatment-estimate 10.536* 0.033** 0.033**

(5.737) (0.013) (0.013)
Pretrend-1 2.072 -0.000 0.000

(4.139) (0.004) (0.004)
Mean pre-treatment 13.94 6.46 6.50
Treated obs. 673 673 673
Total obs. 9464 6650 10164
Treated villages 189 189 189
Total villages 676 475 726
Treated bridges 72 72 72
Total bridges 271 187 294
Year from 2007 2007 2007
Year to 2020 2020 2020

Notes: * p<0.1, ** p<0.05, *** p<0.01. Col. 1–2 include controls sites either rejected after further assessment
by B2P engineers, currently confirmed for construction, or in the RCT. Col. 1–2 estimate effects on the log of
village estimated total population. Standard errors are in parentheses. The standard errors are computed using
the leave-out procedure recommended in Borusyak et al. (2021). Cohorts are constructed by combining treatment
years from 2008 onwards so that each cohort has at least 15 bridges. All estimates account for year fixed effects
and village fixed effects. Col. 2 additionally accounts for unit-linear time trends.

B Robustness checks

B.1 Additional Results on Night Time Light

B.2 Additional Results on Population

B.3 Additional Results on Deforestation

Specifications with fewer pre-treatment periods trade accuracy estimating village fixed effects
for weaker assumptions, parallel trends do not extend as far back (However, see Figure X) for
evidence of long-term parallel trends). In this instance, the GFCD has discontinuities in the
time series, marginally in 2011 and by 300% in 2013 (Potapov and Weissee, 2022). Before the
shift, detected deforestation events were predominately losses of heavily forested areas, where
afterwards deforestation events of lightly forested areas (commonly associated with shifting agri-
cultural practices) make up a larger part of the total. Table X shows the treatment effect is not
an artifact of those shifts, and that the treatment effect persists at the other extreme of included
pre-treatment periods.

Column 1 starts the time series in 2008 to include all bridges in the sample. The effect is
approximately the same. Column 2 starts the panel in 2013, and the effect decreases. Some
of this decrease can be attributed to dropping treated bridges between 2013-2014 that reported
little deforestation after treatment. Column 3 restricts the time range to 2013-2017 and column

3Except in the East, where savannah woodland deforestation has accelerated, but is outside the focus of this
study as trailbridge sites are not located in this area. Outside of national parks, only a fraction of 2009 levels of
savanna woodland are left in 2019 (ERMA, 2021).

4The FAO and Rwanda have different definitions of forested areas, with Rwanda counting land of 25m2 with
10% canopy cover, for 7250 km2 in 2019. The FAO counted 2750 km2 in 2019 (ERMA, 2021).
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Table B.8: Estimated Treatment Effects for %-Canopy Deforested, Different Time Ranges

(1) (2) (3) (4)

From 2008
year#district FEs

From 2013
year#district FEs

Treated 2013
to 2017

year#district FEs

Treated 2018
to 2022

year#district FEs
%-canopy -0.17*** -0.13** -0.21*** -0.16*

(0.06) (0.06) (0.08) (0.09)
Pretrend-1 0.02 0.05 -0.05 0.08

(0.07) (0.08) (0.06) (0.08)
Mean pre-treatment 0.32 0.42 1.08 0.43
Treated obs. 1209 1101 218 528
Total obs. 10140 6660 4718 3522
Treated villages 308 298 87 219
Total villages 676 666 674 587
Treated bridges 117 113 31 85
Total bridges 271 267 270 239
Year from 2008 2013 2011 2017
Year to 2022 2022 2017 2022

Notes: * p<0.1, ** p<0.05, *** p<0.01. Col. 1–4 include controls sites either rejected after further assessment
by B2P engineers, currently confirmed for construction, or in the RCT. All columns estimate effects on yearly
percent canopy cover deforested, calculated as the yearly village area deforested weighted by percent canopy
cover of the deforested pixels in 2000 and divided by total village area forested in 2000. The standard errors are
computed using the leave-out procedure recommended in Borusyak et al. (2021). Cohorts are constructed by
combining treatment years from 2008 onwards so that each cohort has at least 15 bridges. Col. 1–4 account for
year and bridge cluster fixed effects, and interacted year and district fixed effects.

4 similarly restricts to 2018-2022. Looking at either half or the main sample’s time range reveals
similar estimates to having them all combined.

C Mapped Outcome Data
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Table B.9: Estimated Treatment Effects for Different Outcomes

(1) (2) (3)
Square meters

deforestation event
year#district FEs

Square root
%-canopy deforested
year#district FEs

Log+1
%-canopy deforested
year#district FEs

%-canopy -2336.63** -4.53** -0.03**
(1016.32) (2.10) (0.01)

Pretrend-1 176.84 0.73 0.01
(889.98) (2.45) (0.01)

Mean pre-treatment 5313.47 19.63 1.09
Treated obs. 1181 1181 1181
Total obs. 8088 8088 8088
Treated villages 306 306 306
Total villages 674 674 674
Treated bridges 116 116 116
Total bridges 270 270 270
Year from 2011 2011 2011
Year to 2022 2022 2022

Notes: * p<0.1, ** p<0.05, *** p<0.01. Col. 1–3 include controls sites either rejected after further assessment
by B2P engineers, currently confirmed for construction, or in the RCT. Col. 1 estimate effects on the sum of
the area of pixels reported deforested in square meters. Col. 2 uses the square root of the sum of the area of
deforested pixels weighted by percent canopy cover in 2000. Col. 3 instead takes the natural logarithm plus
one. The standard errors are computed using the leave-out procedure recommended in Borusyak et al. (2021).
Cohorts are constructed by combining treatment years from 2008 onwards so that each cohort has at least 15
bridges. Col. 1–3 account for year and bridge cluster fixed effects, and interacted year and district fixed effects.

Table B.10: Estimated Treatment Effects for Percent Canopy Deforested, Different Specifications
and Samples

(1) (2) (3) (4) (5)
Completed or

Confirmed
year#district FEs

Incl,
unassessed

year#district FEs

Main Sample
non-rounded year
year#district FEs

Main sample
year FEs

Main sample
district linear
year trends

%-canopy -0.16** -0.16** -0.17*** -0.16** -0.16***
(0.06) (0.06) (0.06) (0.06) (0.05)

Pretrend-1 -0.02 -0.01 0.04 0.03 0.05
(0.06) (0.06) (0.06) (0.07) (0.07)

Mean pre-treatment 0.35 0.37 0.40 0.37 0.37
Treated obs. 1139 1181 1318 1205 1181
Total obs. 7038 8688 8088 8112 8088
Treated villages 301 306 355 308 306
Total villages 590 724 674 676 674
Treated bridges 114 116 138 117 116
Total bridges 234 293 270 271 270
Year from 2011 2011 2011 2011 2011
Year to 2022 2022 2022 2022 2022

Notes: * p<0.1, ** p<0.05, *** p<0.01. Col. 3–5 include controls sites either rejected after further assessment
by B2P engineers, currently confirmed for construction, or in the RCT. Col. 1 only uses completed or confirmed
as controls. Col. 2 adds to the main sample not yet assessed sites. All columns estimate effects on yearly percent
canopy cover deforested, calculated as the yearly village area deforested weighted by percent canopy cover of the
deforested pixels in 2000 and divided by total village area forested in 2000. Standard errors are in parentheses.
The standard errors are computed using the leave-out procedure recommended in Borusyak et al. (2021). Cohorts
are constructed by combining treatment years from 2008 onwards so that each cohort has at least 15 bridges.
Col. 1–3,5 account for year and bridge cluster fixed effects, and interacted year and district fixed effects. Col. 4
controls for year and bridge cluster fixed effects, and district linear time trends.
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Table B.11: Estimated Treatment Effects for Percent Canopy Deforested, Decomposing the
Effect

(1) (2) (3)
Binary

deforestation event
year#district FEs

Some deforestation
%-canopy deforested

year#bundled-district FEs

Some deforestation
log deforestation sqr meters
year#bundled-district FEs

Treatment-estimate -0.03 -0.25* -0.29**
(0.03) (0.15) (0.13)

Pretrend-1 0.03 0.11 0.05
(0.03) (0.17) (0.15)

Mean pre-treatment 0.40 0.89 7.11
Treated obs. 1181 472 472
Total obs. 8088 3228 3228
Treated villages 306 199 199
Total villages 674 603 603
Treated bridges 116 95 95
Total bridges 270 260 260
Year from 2011 2011 2011
Year to 2022 2022 2022

Notes: * p<0.1, ** p<0.05, *** p<0.01. Col. 1–3 include controls sites either rejected after further assessment
by B2P engineers, currently confirmed for construction, or in the RCT. Col. 1–2 restrict the sample to only
observations with some deforestation. Col. 1 estimates effects on whether any deforestation occurred. Col. 2
uses yearly percent canopy cover deforested, calculated as the yearly village area deforested weighted by percent
canopy cover of the deforested pixels in 2000 and divided by total village area forested in 2000. Col. 3 uses the
natural logarithm of the sum of the area of deforested pixels weighted by canopy cover in 2000. Standard errors
are in parentheses. The standard errors are computed using the leave-out procedure recommended in Borusyak
et al. (2021). Cohorts are constructed by combining treatment years from 2008 onwards so that each cohort has
at least 15 bridges. Col. 1–3 account for year fixed effects, bridge cluster fixed effects. Col. 1 also accounts for
interacted year and district fixed effects, while Col. 2–3 account for year and bundled-districts fixed effects.
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Figure C.1: Deforestation and Percent Canopy Cover in 2000

Darker colored warm pixels show more recent deforestation from 2000 to 2021. Sample villages are imposed over map. Rwandan
political boundaries provided by GLAD.
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Figure C.2: Difference between 2012-2014 Average Radiance and 2019-2021 Average Radiance

Scale is in nW/cm2/sr. The values are top coded at .5 and bottom coded to 0, which is depicted as gray. Sample villages are
imposed over map. The names of the twelve largest cities in Rwanda that fall in the depicted area are displayed. Rwandan political
boundaries provided by GLAD.

30



Figure C.3: Fraction Change in Population Density by Hectare from 2012 to 2021

Scale is fraction change in population between 2012 and 2021. The values are top coded at 1 and bottom coded to 0. Sample villages
are imposed over map. The names of the twelve largest cities in Rwanda that fall in the depicted area are displayed. Rwandan
political boundaries provided by GLAD.
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Figure C.4: Yearly Percentage Canopy Deforested by Treatment Status

Never treated are the preferred set of controls. Percentage canopy deforested is derived from the GFCD, and is the ratio of detected
pixels of deforestation weighted by canopy in 2000 to the area of canopy in 2000. Rwandan political boundaries used in calculations
were provided by GLAD.
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