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Abstract

I estimate the impacts of irrigation canals on annual crop productivity and the
structure of the agricultural sector in South Africa. I use remotely sensed measures
of crop yields and a novel land cover classification dataset in a regression disconti-
nuity framework with relative elevation to the nearest canal as a running variable. I
find that canals increase yields of two major crops (maize and wheat) and also lead
to expansion of commercial farming. On the other hand, subsistence farmers with ac-
cess to irrigation do not expand area under production. Furthermore, they experience
lower yields relative to their counterparts in the control areas. Subsistence farmers
are mostly concentrated in the former homelands, and therefore, large-scale irrigation
exacerbates the post-apartheid spatial inequalities in South Africa.

1 Introduction

Structural transformation has long been discussed as a driver of economic development

(Lewis, 1954; Kuznets, 1957; Ranis and Fei, 1961). While developed economies tend to

be characterized by low shares of agricultural employment, these shares remain high in
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developing countries, particularly in sub-Saharan Africa. Furthermore, agricultural sec-

tors in high-income countries consist of large-scale, commercial farming, whereas many

sub-Saharan economies still rely on subsistence agriculture. For instance, in Africa, 80%

of farmers operate on land with a total area of less than 2 ha (Lowder, Skoet and Raney,

2016). Transition from small-scale, subsistence farming towards large-scale, commercial

agriculture can play an important role in the process of structural transformation by provid-

ing cheap and abundant food supplies to the growing manufacturing and services sectors

(Suri and Udry, 2022; Collier and Dercon, 2014). Therefore, it is important to understand

what factors contribute to commercialization of agriculture in Africa.

This paper examines how access to surface irrigation in South Africa affects agricultural

productivity and commercialization of agriculture. Tatlhego et al. (2022) address a similar

question and evaluate the correlation between an increase in irrigated area and farm size

in seven countries, including South Africa. They find that the average farm size increased

near large dams. Although this study is insightful, it does not identify a causal relationship.

It simply evaluates a pre-post relationship by comparing the average farm size before and

after dam construction. However, it is possible that large-scale farms were also established

nearby, outside the command areas of these dams. In this paper I aim to establish a causal

link between access to irrigation and rise in commercial agriculture. My identification

strategy exploits the fact that irrigation is gravity-based. The basic principle behind gravity-

based irrigation is that water flows downhill, following the slope of the land. A large dam

is used to fill a network of irrigation canals, which are designed to carry water to the fields.

Therefore, land that lies below a canal can be easily irrigated, whereas land above the

canal is less likely to be irrigated.1 I use this fact to evaluate the impact of irrigation canals

using a regression discontinuity design (RDD) with relative elevation to the nearest canal
1It is still possible to irrigate land above canals by pumping water uphill, but it is very costly as it requires

significant amounts of electricity.
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as the running variable. Areas that lie topographically below a canal are defined as treated,

while areas that lie above a canal are defined as control. A similar approach was previously

applied in the context of India (Asher et al., 2022). An alternative running variable would

be the distance to the boundary of a dam’s command area. (Blakeslee et al., 2023; Jones

et al., 2022).

The RDD method with relative elevation to the nearest canal as the running variable

ideally requires a unit of analysis that is highly spatially disaggregated. For instance, Asher

et al. (2022) use village-level data and the elevation of each village is determined as the

5th percentile of the pixel distribution within each polygon. This approach is prone to

measurement error since the village fields can be both above and below the nearest canal,

but they will all be assigned the same treatment status. In contrast, I am able to assign the

treatment status at the field or even sub-field level, since I use outcome variables derived

from raster datasets with resolution of 30 meters and 20 meters.

As a proxy for agricultural productivity, I use the Enhanced Vegetation Index (EVI)

derived from Landsat 8 satellite imagery, available at a 30 meters resolution. EVI can

perform better than the other commonly used measure of crop productivity, Normalized

Difference Vegetation Index (NDVI), especially in contexts with dense vegetation such as

irrigated agriculture (Wardlow and Egbert, 2010). I focus on two major annual crops

grown in South Africa — wheat and maize — and I construct separate productivity mea-

sures for each crop based on the crop calendar. Indicators for land use are derived from

the South African National Land Cover 2018 (SANLC 2018) dataset and the South African

National Land Cover 1990/2020 Change (SANLC 1990/2020). SANLC is a 73-class land

cover classification dataset published by the South African Department of Rural Develop-

ment and Land Reform (DRDLR) and generated by automated mapping models based on

high-resolution satellite imagery. I use SANLC in two ways. First, I derive an indicator on
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whether the land is agricultural or not in order to apply a “crop mask" when I estimate the

effect of irrigation canals on crop yields. This ensures credibility of the EVI measure as a

proxy for yields by removing any noise from non-crop vegetation. Second, I construct indi-

cator variables for land use outcomes, in particular, whether the land is fallow or used for

growing annual crops, and whether there was an expansion of commercial or subsistence

farming between 1990 and 2020. To define the treatment variable, I collect GPS coor-

dinates of 144 irrigation canals from South Africa’s Department of Water and Sanitation

(DWS). The unit of analysis is a 30 meters by 30 meters grid cell and the treatment status

of these grid cells is determined based on their elevation derived from the ALOS Global

Digital Surface Model which is also available at a 30 meters resolution.

The RD results indicate that irrigation canals increase agricultural production both at

the intensive and the extensive margins, that is, irrigation increases both crop yields and

the extent of cultivated area. However, only commercial farmers benefit from access to

irrigation. I find that expansion of commercial cropland is more likely to have happened

in areas below the canals, but the same does not hold for the expansion of subsistence

cropland. Furthermore, I find that subsistence farmers in areas below the canals experi-

ence worse crop yields than farmers in areas above the canals. This is an unexpected result

given the South African government’s emphasis on investment in irrigation schemes as a

way to enhance food security among smallholder farmers (Sinyolo, Mudhara and Wale,

2014). One possible concern regarding the validity of my results is the use of data for

only one year, which was furthermore a drought year. To address this issue of “temporal

external validity", I extend the analysis to a longer time period (2013–2019) and use the

UMD GLAD Global Cropland dataset (Potapov et al., 2022) to generate a new “crop mask".

This dataset does not allow me to distinguish between commercial and subsistence crop-

land, but given that most subsistence farmers are confined to the former homelands, I can
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estimate heterogeneous treatment effects for homelands versus non-homelands and use it

as a proxy for the differential impact on commercial and subsistence farmers.2

This paper contributes to the literature on impacts of large-scale irrigation in both de-

veloped and developing countries (Duflo and Pande, 2007; Zaveri, Russ and Damania,

2020; Dillon and Fishman, 2019; Hornbeck and Keskin, 2014; Strobl and Strobl, 2011;

Olmstead and Sigman, 2015). Most of the previous work relies on an instrumental vari-

able (IV) method that exploits exogeneity of geographical variables in order to predict

suitability of places for dam construction. These studies have found evidence that irri-

gation increases crop yields, decreases dependency on rainfall, and reduces poverty rates.

Recently, regression discontinuity designs have been introduced as a new empirical strategy

for assessing the impact of irrigation dams an canals (Asher et al., 2022; Blakeslee et al.,

2023; Jones et al., 2022; Hagerty, 2021). This approach leads to more valid estimates of

treatment effects since RDD relies on weaker assumptions than IV.

This paper also expands the evidence on irrigation specifically in South Africa. Blanc

and Strobl (2014) compare the performance of large versus small dams3. While they find

that large dams have unequal distributional impacts with a positive effect on cropland

downstream and a negative effect in the direct vicinity of a large dam, they also find

that large dams substantially increase the positive impact of small dams. Mettetal (2019)

examines the adverse environmental impacts of small, medium, and large dams. She finds

that through reduced water access and increased pollution, irrigation dams increase infant

mortality by 10-20 percent. Both of these previous studies employ an IV approach. This
2The former homelands were places where Black South African population was forcibly confined to during

the apartheid. Despite the efforts of the post-apartheid governments, these areas still lag behind in terms of
economic performance. Some of the irrigation canals and their command areas fall within the territory of
these former homelands, and therefore, there is variation in access to irrigation even in the former homelands.

3Large and small dams are differentiated based on their height. Dams with a height between 5 m and 12
m are considered small, dams with a height between 12 m and 3 m are medium, and dams with height over
30 m are considered large.
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is the first paper that uses RDD approach in the context of South Africa. A contribution of

this paper is also the focus on the heterogeneity based on the type of farmer (commercial

versus subsistence) and the former homelands status.

Finally, this paper also contributes to the literature on causal effects of agricultural pro-

ductivity growth. In an early work, Foster and Rosenzweig (2004) estimate the effects

of yield improvements associated with the Green Revolution in India and find that agri-

cultural productivity increases do not spur growth of the non-agricultural sector. On the

other hand, Gollin, Hansen and Wingender (2021) perform a cross-country analysis of the

adoption of high-yielding varieties (HYVs) and find that the associated higher yields led

to an increase in income and slower population growth. Bustos, Caprettini and Ponticelli

(2016) study the adoption of yield-enhancing genetically engineered soybeans in Brazil

and also find evidence of an increased industrial growth. While this paper does not speak

to the issue of industrialization per se, I still contribute to this literature through examining

the impact on the structure of the agricultural sector, which can be a prelude to a wider

structural transformation.

The paper is organized as follows. In Section 2, I provide some background information

on irrigation in South Africa. In Section 3, I describe the data. Section 4 presents the

empirical strategy and discusses the identifying assumptions. In Section 5, I present the

main results and in Section 6, I conclude.

2 Irrigation in South Africa

South Africa is a country plagued by water scarcity, yet its agriculture is heavily reliant

on water. In the colonial times, the British rulers planned to establish the area as an

agricultural colony, and therefore, the construction of large-scale irrigation projects started

already in the pre-apartheid era as a means to alleviate the prevalent water issues (Bablin,
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2021).

Nowadays, South Africa has a well-developed agricultural sector despite water scarcity,

which is made possible by irrigation. Irrigation systems cover 1.3 million hectares or 7.2%

of arable land (Dennis and Nell, 2002) exploited by both commercial and small-scale,

subsistence farmers. This irrigated area generates 30% of the country’s crop production.

Irrigation is beneficial to farmers in three ways: it increases yields, allows planting multiple

crops per year, and expands potentially productive area. There are four main types of

irrigation: flood, sprinkler, center pivot, micro-drip, and micro-spray irrigation.4 Flood

irrigation is the least efficient type, which can lead to water loss, but it is the most viable

option for smallholder farmers for whom the more technologically advanced systems might

be too costly. On the other hand, center pivot irrigation is the most capital intensive option

(Lichtenberg, 1989).

Irrigation in South Africa comes mainly from surface water. Groundwater irrigation

is implemented on 1% of cultivated land (Altchenko and Villholth, 2015), whereas 7.2%

of cultivated land is irrigated in total. This implies that approximately 14% of crops are

irrigated with groundwater and 80% are irrigated with surface water. Surface water is

stored in 200 large dams, as well as in many medium and small dams, and it is distributed

through a network of primary and secondary canals that span over 8,000 kilometers. Fig-

ure A–1 in the Appendix shows the number of large dams constructed per decade. The first

large dam with the main purpose of irrigation was built in 1913 and the majority of dams

were constructed by the beginning of the 1990s. Only six large dams were completed in

the 2000s.

South Africa is divided into nineteen water management areas. As per the National Wa-

ter Act (1998), each water management area is supposed to be under the supervision of a
4https://southafrica.co.za/irrigation.html. Accessed on 30 November 2023.
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catchment management agency (CMA). The roles assigned to CMAs include management

of water resources by deciding on water allocations, water use licensing and monitoring

of compliance, support to marginalized farmers, and monitoring of water quality and pol-

lution. There are significant administrative delays in establishing CMAs. Only two CMAs

are implemented to date, namely, the Breede-Gouritz and the Inkomati-Usutu CMAs. Pay-

ments for water use are collected by the Department of Water and Sanitation, although

smallholder farmers who grow food for subsistence are exempted from these fees (Chip-

fupa and Wale, 2019).

3 Data

3.1 Data sources

Outcome variables. I estimate the effect of canals on two categories of outcomes: agri-

cultural productivity and land use. Due to lack of other data sources, I use remote sensing

data to derive outcome variables in both categories. The main advantage of remote sensing

data is its high granularity (Donaldson and Storeygard, 2016), which allows for a precise

definition of treated and untreated areas. A more traditional source of data on agricultural

outcomes would be a survey. However, due to concerns of data privacy, most surveys are

anonymized before they are made public, which means that it is impossible to identify

which village each observation comes from. For instance, the lowest spatial disaggregation

level at which the South Africa’s Census of Agricultural Households identifies observations

is the level of municipality. For a spatial regression discontinuity design, a higher spatial

resolution is necessary. A disadvantage of using remotely sensed data, as opposed to an

agricultural survey, is the inability to account for variables that would allow for a more

comprehensive analysis (input costs, plot area, etc.).

8



Agricultural yields are proxied by Enhanced Vegetation Index (EVI) derived from Land-

sat 8 satellite imagery5 which is available at a 30 meters resolution. EVI is calculated from

the Near-Infra-Red (NIR), Red and Blue image bands of each scene and ranges in value

from -1 to 1, where negative values indicate non-vegetated areas such as water or barren

land and positive values indicate dense vegetation. EVI improves on the Normalized Dif-

ference Vegetation Index (NDVI), which is another commonly used satellite-derived proxy

for agricultural yields, by adjusting for canopy background and reducing atmosphere in-

fluences (Huete et al., 2002). It is therefore more suitable for areas with high amounts of

biomass, such as irrigated land. Both EVI and NDVI have been shown to be reliable prox-

ies for agricultural yields in various geographical contexts (Lobell et al., 2020; Burke and

Lobell, 2017; Asher and Novosad, 2020). South Africa has two agricultural seasons and I

define each season’s measure of productivity as the maximum value of EVI over the grow-

ing and harvesting stages.6 The main crop of the summer season is maize which is grown

and harvested from mid-November until mid-May. The main crop of the winter season is

wheat which is grown and harvested from mid-June until the end of November.7 South

Africa also has two distinct climates in terms of when most of the rainfall occurs. West of

the country is characterized by winter rainfall with smaller amounts of total precipitation,

whereas the East is characterized by summer rainfall with larger amounts of precipitation.8

This translates into distinct growing seasons for maize in the East and in the West. To en-

sure comparability of climate relevant to agricultural production, I focus my analysis on

the Eastern part of the country.9

5Landsat 8 Collection 1 Tier 1 8-Day EVI Composite. Courtesy of the U.S. Geological Survey.
6I am not concerned about contamination by non-crop vegetation because I restrict the analysis to agricul-

tural land by applying a crop mask as discussed in the following paragraph.
7See Figure A–3 in the Appendix.
8Climate Change Knowledge Portal. South Africa. Current Climate. Climatology. https://

climateknowledgeportal.worldbank.org/country/south-africa/climate-data-historical. [Accessed
on 31 October 2023.]

9I focus on areas that lie east of the 25th meridian. This includes the provinces Limpopo, Mpumalanga,
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Data on land use comes from the South Africa National Land Cover 2018 (SANLC 2018)

and the South Africa National Land Cover 1990/2020 Change (SANLC 1990/2020) re-

leased by the South African Department of Rural Development and Land Reform (DRDLR).

SANLC 2018 is a raster dataset available at the resolution of 20 meters, generated from

automated mapping models using Sentinel 2 satellite imagery for the period of 1 January

2018 to 31 December 2018. SANLC 1990/2020 is based on a comparison of SANLC 1990

and SANLC 2020 datasets.10 I use the land cover data in two ways. First, I create a crop

mask and apply it to the data when analyzing agricultural productivity. This allows me

to eliminate concerns about contamination of the productivity measure by non-crop vege-

tation. Second, I generate key outcomes to study the effect on agricultural production at

the extensive margin and on land use change (expansion of land farmed by commercial

farmers versus subsistence farmers).

Treatment status. To determine the treatment status I collect GPS coordinates of 144

canals from the South Africa’s Department of Water and Sanitation11 and elevation data

from ALOS Digital Surface Model (Tadono et al., 2014), available at a 30 meters resolution.

First, I determine the elevation relative to the sea level for each of the 144 irrigation canals.

Next, I determine the elevation of each grid cell in my dataset relative to the nearest canal

by taking a difference between the elevation of the canal and the elevation of the given

grid cell. Areas with positive relative elevation are defined as treated, whereas areas with

negative relative elevation are considered as control.

Covariates. I gather several geophysical covariates to perform balance tests and verify

the validity of RD estimates. I also include these covariates into my main specification in

KwaZulu-Natal, Free State, Gauteng, Northwest, and parts of Northern Cape and Eastern Cape.
10The 72-class SANLC 1990 was generated from the Landsat 5 imagery for the period of 1989–1991 and is

available at the resolution of 30 meters. The 73-class SANLC 2020 was generated from the Sentinel 2 imagery
for the period of 1 January 2020 to 31 December 2020 and is available at the resolution of 20 meters.

11As explained in the previous footnote, I only focus on canals that lie east of the 25th meridian.
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order to improve precision. I extract daily precipitation values from the Climate Hazards

Center InfraRed Precipitation with Station (CHIRPS) dataset (Funk et al., 2015). The data

is available at the resolution of 5,566 meters. I construct a precipitation measure as the

total annual precipitation in each cell and then I average this value over the years 2014–

2018. Next, I extract the daily land surface temperature at the resolution of 1,000 meters

from the MODIS Terra Land Surface Temperature dataset (Wan, Hook and Hulley, 2021).

I construct a temperature measure as the monthly maximum temperature averaged over

the the years of 2014–2018. The terrain ruggedness index (TRI) comes from Nunn and

Puga (2012). It is a measure of topographic variability within a given area that quantifies

the variation in elevation between neighboring cells in a digital elevation model. Finally, I

calculate distance to the nearest river using WWF HydroSHEDS dataset (Grill et al., 2019).

Homelands. A shapefile with boundaries of of former homelands is obtained from the

Department of Agriculture, Land Reform and Rural Development (DALRRD).

3.2 Summary statistics

The unit of analysis is a 30 meters by 30 meters grid cell. The grid cells are obtained

by converting a geospatial raster dataset with all the above described variables into a de-

limited text format. The conversion is limited to areas within 10 km of each canal. This

results in 56,465,817 observations. The regression discontinuity (RD) sample further re-

stricts the dataset to observations that are within 50 meters of relative elevation to the

nearest canal and excluding a 3 meter donut hole. This results in 27,340,027 observations,

out of which 6,363,358 grid cells are classified as agricultural land. Summary statistics for

the full sample and the RD sample are presented in Table 1.

Restricting the sample to a narrow bandwidth of 50 meters relative elevation does not

result in large differences compared to the full sample, although the land that lies within
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50 meters of relative elevation to the nearest canal is more likely to be an agricultural field.

Furthermore, columns (2)–(5) present summary statistics disaggregated by the treatment

and former homelands status. Treated areas (those lying below canals) have significantly

higher values of EVI, they are more likely to consist of agricultural land and grow com-

mercial irrigated annual crops. They are less likely to grow commercial rainfed annuals,

be cultivated by subsistence farmers, or lie fallow. There are also significant differences in

terms of geophysical covariates. Treated areas have slightly lower maximum monthly tem-

perature (36.2 degrees versus 35.4 degrees) and slightly higher mean annual precipitation

(523 mm versus 555 mm). They are also on average closer to the nearest canal (5,283 m

versus 5,086 m) and to the nearest river (1,120 m versus 840 m) and have lower elevation

above the sea level (1,101 m versus 1,048 m). Although these differences are significant,

they do not pose a concern for the RD analysis since the RD assumptions demand an ab-

sence of discontinuity at the threshold. The test of these assumptions is presented in Table

2.

Former homelands cover 9% of the RD sample. They tend to be slightly more agricul-

tural than non-homelands (23.2% versus 24.4%), but consist almost exclusively of land

farmed by subsistence farmers (68%) or fallow land (30%). Only 1% of homelands agri-

cultural land is exploited by commercial farmers. In terms of geophysical characteristics,

homelands tend to have higher maximum monthly temperature (35.9 degrees versus 36.5

degrees), higher mean annual rainfall (528 mm versus 579 mm), they are on average fur-

ther away from the canals (5,129 m versus 6,154 m) and slightly closer to rivers (1,035

m versus 1,28 m). They also lie at a much lower elevation above the sea level (1,109 m

versus 846 m).
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4 Empirical Strategy

4.1 Previous literature

The main challenge in estimating the impact of irrigation canals is their endogenous place-

ment. For instance, in order to maximize the return on investment, irrigation dams (and

the corresponding network of irrigation canals) might be placed in areas with better agri-

cultural potential. Alternatively, irrigation dams might be constructed in politically favored

places, which could be correlated with the provision of other goods and services correlated

with agricultural yields. A related issue is the lack of historical data for the period before

canals were constructed, which prevents the use of panel data methods. Most canals were

build in the 1960s and 1970s and the Landsat 8 EVI measures are available only from

2013.12

The previous literature employed two main strategies to deal with this endogeneity is-

sue. Early studies relied on an instrumental variable approach. Duflo and Pande (2007)

use river gradient which reflects the geographic suitability to predict the distribution of

irrigation dams across districts in India. A similar approach was previously employed also

in the context of Sub-Saharan Africa. In addition to the river gradient, Strobl and Strobl

(2011) distinguish between ephemeral and perennial rivers to predict the distribution of

dams across the continent. Ephemeral rivers are considered less suitable for dam construc-

tion.

The second empirical strategy is regression discontinuity (RD) design and has been

made possible only recently with the availability of high-resolution data on crop yields.

The running variable is either distance to the command area boundary (Blakeslee et al.,

2023; Jones et al., 2022; Hagerty, 2021) or relative elevation to the nearest canal (Asher
12Lansat 7 NDVI measures go a bit further back in time. They are available from 2000.
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et al., 2022). The main advantage of an RDD is that it produces causal estimates under

weaker assumptions than IV approach. The only assumption needed for internal validity of

RD estimates is continuity at the threshold of all the observable and unobservable charac-

teristics that could be correlated with the outcome. On the other hand, IV method requires

the assumptions of relevance, exogeneity, and exclusion restriction, which are more likely

to be violated. For instance, the instrument used in Duflo and Pande (2007) and subse-

quent studies (river gradient) might be affecting yields directly and not only through the

channel of increasing the probability of dam presence. Lower river gradient makes the area

more suitable for construction of a dam. However, lower river gradient is also mechani-

cally correlated with the land gradient, which makes the area more suitable for agriculture

and also leads to higher yields. This would imply a violation of the exclusion restriction.

Furthermore, the IV approach only allows to estimate the local average treatment effect

(LATE), that is, the impact of dams that were built because of favorable geophysical char-

acteristics (the so-called compliers). This approach cannot say anything about dams being

built for other reasons, which also makes the RDD more attractive.13

In this paper I use an RDD with relative elevation to the nearest canal as the running

variable. A visual representation of the elevation-based RDD is shown in Figure A–2 in the

Appendix. My main specification consists of regressing outcome variables on a treatment

indicator and a linear function of the running variable while allowing for different slopes

in the treatment and the control groups.

4.2 Regression Discontinuity Design

My empirical strategy relies on the fact that surface irrigation is gravity-based. Water from

large irrigation dams is distributed through a network of main and secondary canals that
13Although it should be noted that RDD also yields local effects in the sense that the effects are only esti-

mated for observations that are within the selected bandwidth of the running variable.
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carry water from uphill areas toward downhill areas. It is technically possible to pump

water uphill from nearby canals, and therefore, the running variable does not perfectly

determine the treatment. However, land below canals still has a higher probability of

being irrigated, which allows for a fuzzy RD design. Figure 1 shows the probability of

land being irrigated as a function of the relative elevation to the nearest canal both for the

agricultural and full samples.

The main fuzzy RD specification estimates the local average treatment effect (LATE)

of irrigation canals on the agricultural productivity and land use outcomes for areas just

below the canals. Following (Imbens and Lemieux, 2008; Gelman and Imbens, 2019), I

regress each outcome on the treatment indicator (whether an observation lies below the

canal) while controlling linearly for the running variable (relative elevation to the nearest

canal) separately on each side of the threshold:

Yid =β0 + β1Treatid + β2Rel_Elevid + β3Rel_Elevid × Treatid

+ β4Xid + µd + ϵid

(1)

Yid is the outcome of interest in grid cell i and district d. Treatid is the treatment

indicator that is equal to one when a grid cell lies below a canal, which is determined

based on its elevation relative to the nearest canal. The running variable Rel_Elevid is

calculated as the elevation of the nearest canal minus the elevation of a given grid cell.14

Observations with positive values of Rel_Elevid lie below a canal (treatment group) and

observations with negative values lie above a canal (control group). I interact the running
14Elevation of each grid cell is determined using the ALOS Digital Surface Model data. The dataset is

available at the resolution of 30 meters, which is the same as the resolution of the EVI outcome variable and
similar to the resolution of the land use outcome variables (20 meters). The values from the ALOS raster data
are thus simply matched to the raster data containing the outcomes. This considerably improves accuracy of
the analysis. For instance, Asher et al. (2022) need to determine the elevation of each polygon (village) in
their dataset. They do so by taking the 5th percentile of the elevation distribution of the pixels constituting
the polygon. However, it is likely that some parts of these polygons (villages) lie above the canal even though
they are coded as treated.
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variable Rel_Elevid with the treatment dummy to allow for different slopes at each side of

the threshold.

Xid refers to three geophysical covariates that I control for in order to improve preci-

sion of the RD estimates: average maximum monthly temperature, average total annual

precipitation, terrain ruggedness index, distance to the nearest canal, and distance to the

nearest river. Finally, I include district fixed effects µd to account for unobserved, time-

invariant characteristics that may vary across districts, such as differences in agricultural

policy, institutions or infrastructure, that may affect the outcome variable.

Standard errors are clustered at the canal level since it is the unit at which the treatment

is assigned (Abadie et al., 2023). This also allows for arbitrary spatial correlation in places

around each canal. To ensure comparability of treatment and control units, I restrict the

sample to grid cells that lie within 10 kilometers of distance and 50 meters of relative

elevation to the nearest canal. There might also be some ambiguity in the treatment status

for areas that are very close to the threshold of zero relative elevation to the nearest canal.

There are two reasons for this ambiguity. First, there might be some measurement error,

either in the implied elevation of a canal, or in the elevation of a given grid cell, and this

measurement error affects the determination of the treatment status for places very close

to the threshold. Second, as mentioned earlier, farmers might be pumping water from

canals uphill. This would be much more feasible in areas that are close to the threshold of

zero relative elevation (for example, one meter above a canal) than for areas further uphill

(for example, ten meters above a canal). Including areas close to the threshold would bias

the RD estimates towards zero. Therefore, I exclude a donut hole of grid cells that lie less

than 3 meters below or less than 3 meters above the nearest canal15.
15By doing so, I follow the same bandwidth restriction on the relative elevation as Asher et al. (2022)
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4.3 Identifying Assumptions

In order to interpret the RD estimates as causal effects, three key assumptions must be

satisfied. First, treatment must be at least partially determined by the running variable. In

other words, land below a canal must have a higher probability of being irrigated, while

the land above a canal must have a lower probability of being irrigated. Figure 1 shows

the probability of land being irrigated as a function of the running variable for agricultural

and full samples. There is an apparent discontinuity of the irrigation probability around

the threshold but it is not very large in magnitude, particularly for the agricultural sample.

This is due to the fact that although it is costly, some commercial farmers are able to pump

irrigation water from the canals uphill. This implies that my RD specification follows a

fuzzy design.

Second, all the observable and unobservable variables that also determine the outcome

must be continuous at the threshold. In other words, there should be no sudden discon-

tinuity in any characteristics (weather variables, topography, etc.) between places that

are just above and just below a canal. The only source of discontinuity must be access to

irrigation through the canals. Note that the purpose is to estimate the long-run effect of

irrigation canals. In the long-run, farmers might adjust their input use to take into account

the increase in water supply due to irrigation (Hagerty, 2021). Therefore, a discontinuity

at the threshold in, for instance, the use of fertilizer would not be a threat to identifica-

tion, but rather one of the components of the long-run effect. In order to better articulate

this concept, suppose that crop yields Y (W, I) are a function of water supply W and other

inputs I (fertilizer, pesticides, labor, etc.). We assume that in the long-run, inputs are ad-

justed to the level of water supply. The long-run effect of water supply on crop yields is

then given by the total derivative of Y (W, I) with respect to W which consists of a direct

effect and an indirect effect:
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dY (W, I)

dW
=

∂Y (W, I)

∂W︸ ︷︷ ︸
direct effect

+
∂Y

∂I

dI(W )

dW︸ ︷︷ ︸
indirect effect

(2)

In this paper, I estimate the total effect which includes both the direct and indirect

effects.

I verify the continuity assumption for five observed geophysical characteristics: average

maximum monthly temperature, average total annual precipitation, terrain ruggedness in-

dex, distance to the nearest canal, and distance to the nearest river. Figure 2 shows a

binned scatter plot for the four variables with fitted linear regression lines at each side of

the cutoff. There seem to be points of inflection around the threshold for several character-

istics but there is no apparent discontinuity. Table 2 reports statistical tests of the presence

of discontinuity at the threshold. The estimates are obtained by estimating equation 1 on

the sample of grid cells within 10 kilometers of distance and within 50 meters of relative

elevation to the nearest canal, excluding a 3 meters donut hole. I conduct the tests on both

the agricultural and the full samples. For the agricultural sample, none of the coefficients

are statistically significant nor large in magnitude when compared to the means in the

control group. For the full sample which includes both agricultural and non-agricultural

land, I find that the treated areas are further away from the nearest canal and from the

nearest river but the magnitude of these discontinuities is not very large. I control for all

the geophysical covariates in the main analysis.
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5 Results

5.1 Agricultural seasons in South Africa

South Africa has two distinct agricultural seasons during which winter and summer crops

are grown. Winter crops are typically planted during the autumn months of April and May,

and then harvested during the winter and early spring months of September to November.

Wheat is the most important winter crop with a production of 2,263,000 tonnes during the

2021/2022 season (SAGIS, Monthly Producer Deliveries). Most of the production is cen-

tered in Western Cape. Summer crops are typically planted in the early summer months of

October to December, and are harvested during the late summer and early autumn months

of February to April. The most important summer crop is maize with a production of

15,810,000 tonnes during the 2021/2022 season (SAGIS, Monthly Producer Deliveries).

Maize is produced in almost all parts of South Africa, but the majority of production is con-

centrated in the Free State, Mpumalanga, North West, and KwaZulu-Natal provinces. The

planting, growing, and harvesting months are summarized in Figure A–3 in the Appendix.

I use the temporal ranges of growing and harvesting seasons of wheat and maize (east) to

construct the EVI measures of agricultural productivity for the wheat and maize seasons.

5.2 Treatment effects on the intensive margin

I first examine the effects of irrigation canals on the intensive margin of agricultural pro-

duction. The results of estimating equation 1 are shown in Table 3. I restrict the analysis

to only agricultural land to ensure that my results are not picking up any non-crop vegeta-

tion. I find that irrigation canals increase agricultural productivity by 4% both the wheat

season and the maize season (columns (3) and (4)), however, the effect is precisely esti-

mated only for the maize season. I find qualitatively the same results without performing
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the log-transformation of EVI (columns (1) and (2)). Note that these are reduced-form

estimates that are not scaled by the change in probability of irrigated land at either side of

the threshold.

5.3 Treatment effects on the extensive margin

Next, I consider the question of how irrigation canals affect the extensive margin of agricul-

tural production. In other words, do irrigation canals increase cultivated area? To answer

this question, I estimate equation 1 on the full RD sample (not restricting to agricultural

land only). The results are reported in Table 4. Areas below canals have a 30% higher

share of agricultural land (increase of 6.3 pp). This increase is driven by an increase in

land currently cultivated with annual crops (increase of 41% or 6.8 pp). Areas under the

canals are 12% (0.6 pp) less likely to consist of fallow land.

5.4 Treatment effects on the structure of the agricultural sector

In the previous two subsections I established that irrigation canals lead to a long-term

positive agricultural productivity shock because they increase crop yields as measured by

EVI. I also established that irrigation is a land-augmenting technical change.16 Irrigation

makes land more productive than it would have been under rainfed conditions, which leads

farmers to expand area under production and decrease the area of fallowed land.17 Now

I examine the broader implications of these two findings. How does a persistent, positive

16I borrow this term from Bustos, Caprettini and Ponticelli (2016) who use it to describe the introduction
of a second harvesting season for maize in Brazil. This constitutes a land-augmenting technical change be-
cause it makes one unit of land on average more productive. They contrast it to labor-augmenting technical
change (introduction of a genetically engineered soy variety) which makes one unit of labor on average more
productive.

17Fallow land is land that is deliberately left uncultivated for a certain period. The purpose of this practice is
to restore soil nutrients that are depleted through crop cultivation. Fallowing land thus increases future land
productivity.
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productivity shock affect the structure of the agricultural sector? In particular, are both the

commercial and subsistence farmers able to benefit from the shock?

To answer this question I study how better access to irrigation affects commercial and

subsistence farmers both at the intensive and the extensive margins. First, I estimate the

RD effects of canals on maize season and wheat season EVI separately for land classified

in SANLC 2018 as commercial annuals pivot irrigated, commercial annuals non-pivot irri-

gated, commercial annuals rainfed/non-irrigated, and subsistence annuals.18 The results

are reported in Table 5.

Panels A and B show the effect of being below a canal on land classified as commercial

irrigated (pivot or non-pivot). As expected, the estimated effect on agricultural productiv-

ity is zero since all the grid cells in these two samples are by definition treated. In other

words, areas on both sides of the zero relative elevation threshold have access to irrigation.

Panel C of Table 5 shows the results for land classified as commercial rainfed, which is

the most common category in my agricultural sample. By similar logic, we would expect

a null effect of being below a canal since the grid cells are classified as non-irrigated by

SANLC 2018. However, I find positive and statistically significant effects of 3.9% for wheat

yields and 4.6% for maize yields. Therefore, commercial farmers in areas below a canal

seem to have better quality land than commercial farmers in areas above a canal. One pos-

sible explanation is that commercial farmers are acquiring high-quality land in potentially

irrigable areas with the expectation of making an investment into an irrigation system in

the future. Note that the possibility that the observed effects are due to a misclassification

of irrigated land into non-irrigated land category in the SANLC data is very unlikely.19

18A center pivot irrigation system uses rotating sprinklers mounted on wheeled towers to irrigate a circular
area of farmland. The circular shape of the fields is what allows an automated mapping algorithm to distin-
guish between pivot and non-pivot irrigated crops. Non-pivot irrigation systems in South Africa include flood
irrigation, sprinkler irrigation, micro-drip irrigation, and micro-spray irrigation.

19SANLC 2018 used 6,570 reference points for accuracy assessment. For the commercial non-irrigated
category, the user’s accuracy was 92.44% and the producer’s accuracy was 96.95%. This means that 92.44%
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Panel D of Table 5 shows the canal effects on land farmed by subsistence farmers. I find

a negative and statistically significant effect of 4% on maize EVI, and a negative insignifi-

cant effect of 4.2% on wheat EVI. Therefore, subsistence farmers in (potentially irrigable)

areas below a canal perform worse than subsistence farmers in areas above a canal. A pos-

sible explanation is that subsistence farmers below canals adopt water-intensive varieties

as a result of having access to irrigation, but due to lack of maintenance of the irrigation

infrastructure or low priority within the water distribution network, they face uncertain

levels of water supplies, which negatively impacts their yields.

Second, I consider the question of whether access to irrigation leads to an expansion of

the agricultural sector, and if so, whether commercial and subsistence farmers are affected

differently. Table 6 shows the RD results for changes in land use between 1990 and 2020

derived from the SANLC 1990/2020 dataset. The effects are estimated for three outcomes:

expansion of commercial pivot irrigated land, expansion of commercial non-pivot irrigated

or non-irrigated land20, and expansion of subsistence land. I find positive and statistically

significant effects on the expansion of commercial land but virtually a zero effect on the

expansion of land farmed by subsistence farmers. In the control group (areas above a

canal), 2.9% of grid cells became commercial pivot-irrigated between 1990 and 2020. In

treated areas, the conversion toward commercial pivot-irrigated farming was 66% higher

(1.9 pp). Similarly, 2.1% of grid cells in the control group became commercial non-pivot

between 1990 and 2020, but this fraction was 29% (0.6 pp) higher in the treatment group.

Irrigation canals, therefore, contribute to the expansion of the commercial agriculture in

South Africa.

of reference sites that were classified as commercial non-irrigated were in fact commercial non-irrigated and
96.95% of commercial non-irrigated reference sites were classified correctly.

20These two categories of commercial land are lumped together because SANLC 1990 data cannot distin-
guish between irrigated and non-irrigated land without the circular shape of the fields. As explained earlier,
center pivot irrigation results in easily distinguishable circular patterns.

22



5.5 Heterogeneous treatment effects: Former homelands and drought

A possible concern for my analysis of agricultural productivity is “temporal" external valid-

ity since I only use data for one year. Maybe the negative effects of irrigation canals on the

subsistence farmers’ yields would not be observed in other periods. Indeed, 2018 was a

drought year that affected the whole country. It could be that the subsistence farmers situ-

ated below canals are negatively impacted only during droughts.21 To address this issue, I

extend the analysis to multiple years.

Instead of SANLC 2018, which covers only one year, I use the Global Cropland datasets

produced by the University of Maryland Global Land Analysis & Discovery (UMD GLAD)

for the period of 2013–2019 (Potapov et al., 2022) to generate a new crop mask. In

particular, I use two of the UMD GLAD datasets. First, UMD GLAD Global Cropland 2015

classifies a grid cell as cropland if active crop was detected any time between 2012 and

2015. Second, UMD GLAD Global Cropland 2015 classifies a grid cell as cropland if active

crop was detected any time between 2016 and 2019. When I compare the crop masks

generated according to UMD GLAD 2019 and SANLC 2018, I find them mostly consistent

with each other. For non-homelands, 87% of grid cells classified as cropland by UMD

GLAD 2019 are also classified as agricultural in my previous analysis using SANLC 2018.

For homelands, only 37% of grid cells classified as cropland by UMD GLAD 2019 are also

classified as agricultural in my previous analysis. This is mostly due to the presence of

sugarcane, which is correctly detected as cropland by UMD GLAD, but which I do not

include in my previous analysis where I focus only on annual crops. For a more detailed

picture of how SANLC and UMD GLAD datasets compare, Table A–2 in the Appendix shows

the breakdown of NLC categories for both homeland and non-homeland detected cropland.
21In the period of droughts, there is less water available in the irrigation system than usual. Commercial

farmers could be prioritized over subsistence farmers in getting access to the limited water supplies during
droughts, which could lead to lower yields for subsistence farmers below canals relative to those above canals
who usually do not have access to any water from the canal networks.
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UMD GLAD datasets only detect cropland and do not allow me to distinguish between

commercial and subsistence farming. However, I find that 95% of subsistence land in my

sample is concentrated in the former homelands,22 which allows me to consider former

homelands as a proxy for subsistence farmland.

In addition to heterogeneity by the former homelands status, I also exploit hetero-

geneity by the incidence of drought to evaluate whether the canals alleviate the negative

impact of droughts. I derive a normalized measure of drought based on a coarse grid-level

Palmer Drought Severity Index (PDSI) derived from the University of Idaho’s TerraClimate

dataset.23 The PDSI values in my sample range from -5.9 to 4.2 with positive values

representing wet conditions and negative values representing dry conditions. Following

Hornbeck and Keskin (2014), I set the index to zero for wet years and normalize it to have

a mean of zero and a standard deviation of one. I also derive four different measures of

drought. I calculate the average PDSI over the planting and growing months for wheat

and maize separately. Drought that occurs at the planting stage might have different con-

sequences for the crops than drought with onset during the growing stage. Table A–1 in the

Appendix shows that in the control areas (above canals), drought occurring at the growing

stage depresses crop yields more than drought during the planting stage. Moreover, wheat

appears to be more drought-sensitive than maize.

The new empirical specification uses variation in the former homelands status and

in the normalized PDSI calculated for the planting and growing stages to estimate the

differential impact of irrigation canals during droughts on crop yields separately in the

former homelands and non-homelands. The maize season and wheat season log crop

yields Y in grid cell i, district d, and year t are regressed on the treatment indicator,
22Moreover, the agricultural land in the former homelands in my sample consists of 68% subsistence farm-

land, 31% fallow land, and only 1% commercial farmland.
23PDSI is available at a resolution of 4638.3 meters, which is significantly coarser than the resolution of my

outcome variable (30 m).
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the running variable (Rel_Elevid), the normalized PDSI at planting or growing stages

(Droughtidt), and the relevant interaction terms between treatment and the running vari-

able (Treatid × Rel_Elevid), drought and treatment (Droughtidt × Treatid), drought and

the running variable (Droughtidt×Rel_Elevid), and drought, treatment and running vari-

able (Droughtidt × Treatid ×Rel_Elevid). The regression is run separately for homelands

and non-homelands and separately for drought at the planting and the growing stages.

Geophysical covariates (Xidt), district fixed effects (µd), and year fixed effects (γt) are in-

cluded as well. Standard errors are clustered at the canal level to account for potential

spatial correlation. The empirical specification is:

Yidt =α0 + α1Treatid + α2Rel_Elevid + α3Treatid ×Rel_Elevid + α4Droughtidt

+ α5Droughtidt × Treatid + α6Droughtid ×Rel_Elevid+

α7Droughtidt × Treatid ×Rel_Elevid + α8Xidt + µd + γt + ϵidt

(3)

The effect of irrigation canals on crop yields in non-drought conditions is captured by

α1 and reflects variation spanning multiple years (2013–2019). The impact of an increase

of one standard deviation in the drought index on the canal treatment effect is captured

by α5. The results of estimating the equation 3 are reported in Table 7. In non-homelands,

I find that irrigation canals increase yields in wet conditions. Moreover, treatment effects

are even higher in the dry conditions, although most of the coefficients are imprecisely es-

timated. In non-drought conditions canals increase wheat yields by 2.8% and maize yields

by 1.5%. An increase of one standard deviation in the drought index further increases the

effect of canals. The treatment effect becomes 4.7% for wheat and 2.2% for maize.

More importantly, I still find a negative treatment effect of irrigation canals in the for-

mer homelands, where subsistence farmers are concentrated, even in non-drought condi-
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tions. Wheat yields in areas below canals decline by 6.1 to 6.6% and maize yields decline

by 3.6 to 5.9%. Drought conditions further worsen the negative impact of droughts for

wheat, although this is imprecisely estimated. In case of maize, however, I find that canals

alleviate the adverse impact of droughts in the former homelands.

6 Discussion and concluding remarks

I find that irrigation canals cause a positive agricultural productivity shock, which con-

tributes to the expansion of commercial farming in South Africa. However, subsistence

farmers seem largely unaffected and unable to benefit from potential productivity gains.

This is not necessarily a negative outcome in the light of structural transformation which

is often considered a key component in the process of economic development.

Structural transformation involves a shift from an agriculture-based economy toward

an economy based on manufacturing and services and commercialization of agriculture can

help spur such change (Suri and Udry, 2022). For instance, a transition from subsistence

farming, where smallholder farmers grow crops for own consumption, towards commercial

farming, where large-scale farmers grow crops for sale, can provide enough and sufficiently

cheap food surpluses to support the growing labor force in the manufacturing sector. Fur-

thermore, smallholder farms are often plagued by inefficiencies and low productivity. As

Collier and Dercon (2014) remark, the organization of the agricultural sector in Africa has

to change significantly to enable economic development, and such re-organization might

be at odds with the primary focus on increasing productivity of smallholder farmers as a

means for poverty reduction. Commercialization, and the associated increases in farm size

could therefore be a step in the right direction. The typical argument favoring the focus

by donors and practitioners on smallholder farmers over large-scale producers involves

the “inverse farm size/productivity" relationship (van Zyl, Binswanger and Thirtle, 1995)
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but more recent works question these conclusions (Foster and Rosenzweig, 2022). In Sub-

Saharan Africa, 70–80% of farms are smaller than 2 ha, although a recent rise in farm sizes

has been documented (Jayne et al., 2016). However, little is known of what factors play a

role in this changing structure.

One limitation of this paper is the inability to make any welfare statements. Crop

yields do not represent farmer profits nor wages of agricultural workers. Also, it is unclear

whether commercialization of agriculture is welfare-improving. One way in which the rise

of commercial agriculture could improve living standards is through inducing rural-urban

migration and/or industrialization. Subsistence farmers could thus move towards more

productive sectors and earn higher wages. I plan to examine the effects of commercializa-

tion of agriculture on employment patterns, and other economic outcomes in my future

research.
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Tables

Table 1: Summary statistics

RD sample

Full sample Control Treatment Non-homeland Homeland vs. non-
mean mean vs. control diff. mean homeland diff
(1) (2) (3) (4) (5)

Ag. productivity
Wheat season EVI 0.319 0.288 0.063*** 0.308 0.000**

(0.000) (0.000)
Maize season EVI 0.496 0.476 0.072*** 0.496 0.017***

(0.000) (0.000)
Wheat season EVI (log) -1.241 -1.337 0.167*** -1.289 0.030***

(0.000) (0.000)
Maize season EVI (log) -0.766 -0.806 0.140*** -0.768 0.053***

(0.000) (0.000)

As share of total area:
Agri land 0.167 0.213 0.064*** 0.232 0.012***

(0.000) (0.000)

As share of agri land:
Commercial pivot irrig. 0.158 0.146 0.099*** 0.201 -0.200***

(0.000) (0.001)
Commercial non-pivot irrig. 0.032 0.027 0.031*** 0.042 -0.042***

(0.000) (0.000)
Commercial rainfed 0.51 0.530 -0.047*** 0.566 -0.557***

(0.000) (0.001)
Subsistence 0.089 0.077 -0.021*** 0.004 0.680***

(0.000) (0.000)
Fallow land 0.212 0.221 -0.062*** 0.187 0.119***

(0.000) (0.001)

Geo. controls:
Terrain Ruggedness Index 2.06 1.21 0.04*** 1.19 0.32***

(0.000) (0.001)
Max monthly temperature 35.2 36.2 -0.822*** 35.9 0.612***

(0.001) (0.002)
Mean annual precipitation 565 523 31.5*** 528 50.8***

(0.065) (0.104)
Distance to nearest canal 5833 5283 -197*** 5129 1025***

(1.062) (1.690)
Distance to nearest river 1329 1120 -280*** 1035 -6.79***

(0.338) (0.548)
Elevation 1077 1101 -52.7*** 1109 -263***

(0.162) (0.255)

Number of obs. 56,465,817 18,959,806 27,340,027 24,844,695 27,340,027

Note: This table shows summary statistics for the main outcomes and the control variables for different samples of the data.
Column (1) includes all the grid cells within 10km distance of the canals. Columns (2) to (5) include the RD sample of grid cells
that are ≤ 50m and ≥ 3m of relative elevation to the nearest canal. Column (2) shows the mean of the control group (grid cells
above the canals) and column (3) shows the result of the t-test of a difference between treatment and control means (treatment
minus control) with standard errors in the parentheses. Column (4) shows the mean of the non-homeland areas and column (5)
shows the result of the t-test of a difference between non-homeland and homeland means (homeland minus non-homeland) with
standard errors in the parentheses. * significant at 10%, ** significant at 5%, *** significant at 1%.
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Table 2: Balance in geophysical characteristics

Max monthly temp. Annual precip. Distance Distance
TRI (in °C) (in mm) to canal to river
(1) (2) (3) (4) (6)

Panel A. Agricultural grid cells
Below canal -0.021 0.040 -4.33 267 75.4

(0.038) (0.102) (3.70) (185) (52.8)

Control mean 0.901 36.0 549 5,401 1,175
R2 0.370 0.539 0.781 0.223 0.189
N 6,363,358 6,363,358 6,363,358 6,363,358 6,363,358

Panel B. All grid cells
Below canal 0.001 -0.017 -2.67 351*** 56.5*

(0.032) (0.105) (2.84) (107) (32.8)

Control mean 1.21 36.2 523 5,283 1,120
R2 0.348 0.604 0.806 0.162 0.101
N 27,331,978 27,331,978 27,331,978 27,331,978 27,331,978

Note. This table reports regression discontinuity estimates of the coefficients on the treatment indicator obtained
by estimating equation 1 and omitting the outcome variable from the list of controls. Standard errors are clustered
at the level of 144 canals. The sample is restricted to grid cells within 10 km of distance and ≤ 50m and ≥ 3m
of relative elevation to the nearest canal. The Terrain Ruggedness Index (TRI) is a topographic measure that
captures variability of elevation of a given area and is derived from Nunn and Puga (2012). Maximum monthly
temperature is calculated as an average over the maximum temperatures of each month in the period of 2014–
2018 and is derived from MODIS Terra Land Surface Temperature dataset. Annual precipitation is calculated as
an average of total annual rainfall over the period of 2014–2018 and is derived from the CHIRPS dataset (Funk
et al. 2015). * significant at 10%, ** significant at 5%, *** significant at 1%.
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Table 3: Regression discontinuity results for agricultural outcomes: intensive
margin

Wheat season Maize season Wheat season Maize season
EVI EVI EVI (log) EVI (log)
(1) (2) (3) (4)

Below canal 0.014 0.023* 0.040 0.041**
(0.011) (0.012) (0.024) (0.019)

Control mean 0.327 0.587 -1.28 -0.596
R2 0.537 0.362 0.573 0.354
Clusters 144 144 144 144
N 6,363,358 6,363,358 6,363,349 6,363,358

Note. This table reports regression discontinuity estimates of the coefficients on the treatment
indicator obtained by estimating equation 1. Standard errors are clustered at the canal level.
The sample is restricted to grid cells within 10 km of distance and ≤ 50m and ≥ 3m of relative
elevation to the nearest canal. The sample includes only grid cells classified as agricultural
in the SA NLC 2018 data (categories 38,39,40,41,43,44,45 which comprise commercial and
subsistence annual crops and corresponding fallow land). Enhanced Vegetation Index (EVI)
is a remote sensing measure that is generated from the Near-IR, Red and Blue bands of each
satellite image, and ranges in value from -1 to 1. It is derived from the Landsat 8 Collection
1 Tier 1 8-Day EVI Composite. I extract the maximum EVI over the growing and harvesting
seasons of wheat and maize respectively. Since a crop mask is applied to the data, I consider
the measure as a proxy for agricultural productivity that is not contaminated by non-crop
vegetation. Columns (1) and (2) report the raw measure, whereas columns (3) and (4) report
a log-transformation of EVI. * significant at 10%, ** significant at 5%, *** significant at 1%.
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Table 4: Regression discontinuity results for agricultural
outcomes: extensive margin

Any agri Fallow
land Annuals land
(1) (2) (3)

Below canal 0.063*** 0.068*** -0.006
(0.0172) (0.0167) (0.00422)

Control mean 0.213 0.166 0.049
r2 0.086 0.086 0.032
Clusters 144 144 144
N 27,331,978 27,331,978 27,331,978

Note. This table reports regression discontinuity estimates of
the coefficients on the treatment indicator obtained by estimating
equation 1. Standard errors are clustered at the canal level. The
sample is restricted to grid cells within 10 km of distance and ≤
50m and ≥ 3m of relative elevation to the nearest canal. The sam-
ple includes both agricultural and non-agricultural grid cells. “Any
agricultural land" is equal to 1 if the grid cell is classified as agri-
cultural in the SA NLC 2018 data (categories 38,39,40,41,43,44,45
which comprise commercial and subsistence annual crops and cor-
responding fallow land), and 0 otherwise. “Annuals" is equal to 1 if
the grid cell is classified as growing commercial or subsistence an-
nual crops in the SA NLC 2018 data (categories 38,39,40,41) and 0
otherwise. “Fallow land" is equal to 1 if the grid cell is classified as
fallow land in the SA NLC 2018 data (categories 43,44,45) and 0
otherwise. * significant at 10%, ** significant at 5%, *** significant
at 1%.
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Table 5: Regression discontinuity results for agricultural outcomes disaggregated by own-
ership and irrigation status

Wheat season Maize season Wheat season Maize season
EVI EVI EVI (log) EVI (log)
(1) (2) (3) (4)

Panel A. Commercial pivot irrigated
Below canal -0.004 0.007 -0.001 0.011

(0.021) (0.011) (0.034) (0.015)

Control mean 0.709 0.845 -0.410 -0.196
R2 0.191 0.093 0.160 0.117
Clusters 105 105 105 105
N 241,396 241,396 241,396 241,396

Panel B. Commercial non-pivot irrigated
Below canal -0.007 -0.010 -0.020 -0.014

(0.020) (0.010) (0.040) (0.014)

Control mean 0.685 0.863 -0.524 -0.174
R2 0.332 0.142 0.342 0.127
Clusters 99 99 99 99
N 1,157,777 1,157,777 1,157,777 1,157,777

Panel C. Commercial rainfed
Below canal 0.011** 0.024** 0.038*** 0.045***

(0.005) (0.010) (0.013) (0.016)

Control mean 0.254 0.570 -1.44 -0.613
R2 0.487 0.227 0.504 0.235
Clusters 135 135 135 135
N 3,264,046 3,264,046 3,264,043 3,264,046

Panel D. Subsistence
Below canal -0.012 -0.019** -0.041 -0.039***

(0.009) (0.008) (0.029) (0.014)

Control mean 0.266 0.462 -1.40 -0.810
R2 0.761 0.611 0.789 0.655
Clusters 40 40 40 40
N 440,017 440,017 440,014 440,017

Note. This table reports regression discontinuity estimates of the coefficients on the treatment indicator obtained by
estimating equation 1. Standard errors are clustered at the canal level. The sample is restricted to grid cells within 10
km of distance and ≤ 50m and ≥ 3m of relative elevation to the nearest canal. Panel A restricts the sample to grid cells
classified as commercial pivot-irrigated (cat. 38). Panel B restricts the sample to grid cells classified as commercial
non-pivot-irrigated (cat. 39). Panel C restricts the sample to grid cells classified as commercial rainfed (cat. 40). Panel
D restricts the sample to grid cells classified as subsistence (cat. 41). * significant at 10%, ** significant at 5%, ***
significant at 1% The EVI measure is described in the note of Table 3.
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Table 6: Regression discontinuity results for land use out-
comes

Expansion Expansion Expansion
commercial commercial subsistence

pivot non-pivot
(1) (2) (3)

Below canal 0.019** 0.006*** -0.000
(0.008) (0.002) (0.001)

Control mean 0.029 0.021 0.003
R2 0.074 0.012 0.022
Clusters 144 144 144
N 27,331,978 27,331,978 27,331,978

Note. This table reports regression discontinuity estimates of the
coefficients on the treatment indicator obtained by estimating equa-
tion 1. Standard errors are clustered at the canal level. The sample
is restricted to grid cells within 10 km of distance and ≤ 50m and ≥
3m of relative elevation to the nearest canal. The sample includes
both agricultural and non-agricultural grid cells. “Expansion com-
mercial pivot" is equal to 1 if the grid cell is classified as commercial
pivot-irrigated in the SA NLC 2018 data but not in the SA NLC 1990
data, and 0 otherwise. “Expansion commercial non-pivot" is equal
to 1 if the grid cell is classified as commercial non-pivot irrigated or
commercial rainfed in the SA NLC 2018 data but not in the SA NLC
1990 data and 0 otherwise. “Expansion subsistence" is equal to 1
if the grid cell is classified as subsistence land in the SA NLC 2018
data but not in the SA NLC 1990 data and 0 otherwise. * significant
at 10%, ** significant at 5%, *** significant at 1%.
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Table 7: Differential RD effects of canals by drought and the former homelands
status

Non-homelands Homelands

Drought at: Growing Planting Growing Planting
stage stage stage stage
(1) (2) (3) (4)

Panel A. Log wheat EVI
Below canal 0.027 0.028 -0.064* -0.059*

(0.017) (0.018) (0.031) (0.031)

Below canal × drought 0.009 0.018* -0.055 -0.043
(0.009) (0.010) (0.034) (0.028)

Panel B. Log maize EVI
Below canal 0.014* 0.015* -0.035 -0.057**

(0.008) (0.008) (0.027) (0.023)

Below canal × drought 0.007 0.007 0.041*** 0.036**
(0.007) (0.005) (0.015) (0.015)

Clusters 136 136 26 26
N 24,120,228 24,120,228 675,443 675,443

Note. This table reports regression discontinuity estimates of the coefficients on the treat-
ment indicator obtained by estimating equation 3. Standard errors are clustered at the canal
level. The sample is restricted to grid cells that lie within 10 km of distance and ≤ 50m and
≥ 3m of relative elevation to the nearest canal. In columns (1) and (2), the sample is further
restricted to grid cells that lie outside the territory of former homelands, whereas in columns
(3) and (4), it is restricted to grid cells that lie within the territory of former homelands. The
sample includes only grid cells classified as agricultural in the UMD GLAD Global Cropland
data. Enhanced Vegetation Index (EVI) is a remote sensing measure that is generated from
the Near-IR, Red and Blue bands of each satellite image, and ranges in value from -1 to 1. It is
derived from the Landsat 8 Collection 1 Tier 1 8-Day EVI Composite. I extract the maximum
EVI over the growing and harvesting seasons of wheat and maize respectively. Since a crop
mask is applied to the data, I consider the measure as a proxy for agricultural productivity
that is not contaminated by non-crop vegetation. * significant at 10%, ** significant at 5%,
*** significant at 1%.
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Figures

Figure 1: Discontinuity in probability of irrigated land

Note. Each panel plots the average probability of being irrigated within each quantile bin of relative elevation to the nearest
canal. The negative values to the left of 0 represent the control units (above a canal) and the positive values to the right of 0
represent the treatment units (below a canal). Fitted linear regression lines of the underlying data are plotted separately for
each side of the threshold. The sample is restricted to grid cells within 10 km of distance and ≤ 50m and ≥ 3m of relative
elevation from the nearest canal. The left figure is generated for the agricultural sample (where the crop mask is applied)
and the right figure is generated for the full sample (both agricultural and non-agricultural land).
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Figure 2: Continuity through threshold of geophysical characteristics. Agricultural land

Note. Each panel plots the average outcome within each quantile bin of relative elevation to the nearest canal. The negative
values to the left of 0 represent the control units (above a canal) and the positive values to the right of 0 represent the
treatment units (below a canal). Fitted linear regression lines of the underlying data are plotted separately for each side of
the threshold. The sample is restricted to grid cells within 10 km of distance and ≤ 50m and ≥ 3m of relative elevation
from the nearest canal. Crop mask is applied.
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Figure 3: Regression discontinuity binned scatterplots for main outcomes

Note. Each panel plots the average outcome within each quantile bin of relative elevation to the nearest canal. The negative
values to the left of 0 represent the control units (above a canal) and the positive values to the right of 0 represent the
treatment units (below a canal). Fitted linear regression lines of the underlying data are plotted separately for each side of
the threshold. The sample is restricted to grid cells within 10 km of distance and ≤ 50m and ≥ 3m of relative elevation
from the nearest canal.
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Appendix

Figure A–1: Histogram of years of construction of irrigation dams

The data comes from AQUASTAT, the geo-referenced database on dams in Africa. Only dams with the listed purpose of
irrigation are included. There are 200 irrigation dams and 550 dams in total.
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Figure A–2: Schematic representation of elevation-based RDD
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Figure A–3: FAO Crop Calendar

Source: https://www.fao.org/giews/countrybrief/country.jsp?code=ZAF.
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Table A–1: Drought effects on crop yields (control group)

Log wheat season EVI Log maize season EVI
(1) (2)

Drought at:
Planting stage -0.043** -0.015**

(0.019) (0.007)

Growing stage -0.029* 0.007
(0.016) (0.005)

R2 0.561 0.254
Clusters 142 142
N 14,566,770 14,568,564

Note. This table reports the results of estimating the equation yidt = β0 +
β1plant_pdsiidt + β2grow_pdsiidt + β3Xidt + µd + γt + ϵidt by OLS on
the control group sample (above canals), where yidt proxies the crop yields
by log wheat season EVI or maize season EVI in grid cell i, district d, and
year t, plant_pdsiidt and grow_pdsiidt are the normalized values of the
average Palmer Drought Severity Index of a given crop during its planting
stage and growing stage respectively, Xidt are geophysical controls variables
(temperature, precipitation, TRI, distance to nearest canal), µd are district
fixed effects, and γt are year fixed effects. Standard errors in parentheses
are clustered at the canal level to account for potential spatial correlation.
* significant at 10%, ** significant at 5%, *** significant at 1%.
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Table A–2: Comparison of UMD GLAD 2019 and SANLC 2018

Proportion of UMD GLAD cropland
grid cells in a given NLC cat.

Panel A. Homelands
Subsistence / Small-Scale Annual Crops 33%
Cultivated Emerging Farmer Sugarcane Non-Pivot 25%
Open Woodland 12%
Cultivated Commercial Sugarcane Non-Pivot 4%
Residential Formal (Bush) 4%

Panel B. Non-homelands
Commercial Annuals Crops Rain-Fed / Dryland / Non-Irrigated 49%
Commercial Annuals Pivot Irrigated 32%
Commercial Annuals Non-Pivot Irrigated 6%
Natural Grassland 4%
Cultivated Commercial Sugarcane Non-Pivot 2%

Note. Only five most frequent categories for both homelands and non-homelands are included.
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