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More than one billion people worldwide live in informal settlements1, often called ‘slums’. In 

sub-Saharan Africa, the world’s fastest urbanizing region2, every second urban resident is 

considered a ‘slum-dweller’1. Identifying and mapping the locations of informal settlements at 

scale and tracking their development over time is thus crucial for adequate policies to alleviate 

urban poverty and inequality. However, given the rapid and often unplanned urbanization 

dynamics in African cities, existing monitoring systems are insufficient for tracking the 

development of informal settlements. Here we show how open-access satellite imagery and 

machine learning can be used to identify and map urban informal settlements in sub-Saharan 

Africa across space and time. We developed a machine learning model that combines satellite 

images with ground truth data on informal settlements from various African cities. Our machine 

learning pipeline produced 10m resolution probability maps of informal settlements, based on 

which we calculated estimates of the prevalence and change of informal settlements in 529 

cities from 44 countries from 2016 to 2022. We found a high prevalence of informal settlements 

in many African cities, with particularly high growth rates in Middle and West Africa. In 2022, 

in 274 of 529 cities the share of the urban population living in informal settlements exceeded 

50%, and in 84% of cities, this share increased between 2016 and 2022. Our approach facilitates 

tracking the spatiotemporal development of informal settlements within cities in a timely and 

cost-effective manner. Furthermore, it provides first-time estimates of the share and number of 

people living in informal settlements across sub-Saharan African cities.  
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Introduction 

More than one billion people – a quarter of the world’s urban population – are currently living 

in informal settlements, often referred to as ‘slums’. In sub-Saharan Africa, every second urban 

resident is considered a so-called ‘slum-dweller’1. UN-Habitat defines a ‘slum-dweller’ as a 

person affected by at least one of the following five ‘household deprivations’: Lack of 1) access 

to an improved water source, 2) access to an improved sanitation facility, 3) sufficient living 

area, 4) housing durability of dwelling, and 5) security of tenure3. Informal settlement dwellers 

are thus particularly vulnerable to infectious diseases4 and natural disasters5, suffer from a lack 

of privacy6 and face the constant threat of eviction7.   

With an annual growth rate in the urban population of consistently around 4% in the past two 

decades, sub-Saharan Africa is the world’s fastest urbanizing region. Its urban population is 

expected to grow from half a billion to 1.3 billion by 2050, corresponding to an increase in the 

urbanization rate from 41% to 58%2. The region already hosts two megacities (Lagos and 

Kinshasa), i.e., cities with a population exceeding 10 million, with another four (Luanda, Dar 

es Salaam, Nairobi, and Khartoum) projected to pass this threshold by 20508. Given the 

rapidness of the urbanization process, the lack of planned urban development, and insufficient 

provision of basic infrastructure, such as clean water sources and modern sanitation, a large 

share of these new urban dwellers will likely live in informal settlements9. 

Tracking the emergence and development of informal settlements is thus crucial for monitoring 

progress towards Sustainable Development Goal (SDG) 11.1 – “ensuring access for all to 

adequate, safe and affordable housing and basic services and upgrade slums”10 – as well as an 

important information tool for African policymakers to alleviate potentially adverse living 

conditions of the region’s rapidly growing urban population. Timely identification of ‘informal 

growth hotspots’ can help allocate resources where they are most needed – at the national, 

regional, and local level.  
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However, established methods of data collection on informal settlements have several 

drawbacks which bedevil prompt, targeted, and adequate policy responses to informal 

settlement formation. Most estimates on informal settlements at the national, continental, or 

global level are based on national censuses and household surveys (e.g., Demographic and 

Health Surveys (DHS)11, Multiple Indicator Cluster Surveys (MICS)12, which are typically 

carried out every ten and every three to five years, respectively13 – too infrequently for timely 

tracking of rapid informal settlement formations. Political instability and violent conflict 

regularly delay or prevent data collection leading to even longer intervals14. Additional 

problems are that informal settlement dwellers tend to be under-sampled in household surveys15 

and that most censuses and household surveys do not contain information on the security of 

tenure (one of the five criteria related to slum households)3. As a consequence, a non-negligible 

portion of affected individuals is not considered in current statistics on informal settlements.  

Lastly, a major drawback of survey- or census-based methods is spatial imprecision. While the 

UN-Habitat definition is based on households, informal settlements arguably pertain to a 

geographic area. This issue has been tackled, for example, by defining an urban DHS11 Primary 

Sampling Unit (PSU) as an informal settlement if the proportion of informal settlement dwellers 

exceeds a certain threshold, e.g., 50%16. However, this approach misses small pockets of 

informal settlement households in mostly formal areas (potential underestimation). At the same 

time, a PSU with 51% informal settlement dwellers is considered informal in its entirety, even 

though a substantial share of 49% of residents do not suffer from the above-mentioned 

household deprivations (potential overestimation). In addition, even though most censuses and 

household surveys provide geocoded information, it is not sufficiently precise to map the spatial 

extent of informal settlements. The DHS11, for example, generally provide information on the 

coordinates of PSUs, yet with two major shortcomings. First, to ensure the confidentiality of 

respondents, the coordinates are randomly displaced, at a random angle and at a random 

distance (within a 2km radius for urban PSUs). Second, these displaced coordinates refer to the 
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PSU centroid only, and there is no information on the surface area or boundary shape of these 

PSUs17. Hence, one can only very roughly infer the potential locations of informal settlements 

– accurate maps delineating informal from formal settlements in cities cannot be produced. 

Alternatively, geocoded surveys and censuses have been used to map housing conditions (based 

on UN-Habitat’s definition of ‘slum households’) in sub-Saharan Africa in 5km grids18. While 

insightful to estimate spatial heterogeneities across and within countries in the prevalence of 

insufficient housing conditions, the coarse spatial resolution does not allow precise mapping 

and tracking of informal settlements in cities.  

In light of the shortcomings of survey- or census-based methods, an emerging literature 

increasingly uses remote sensing data, in particular satellite imagery, to map informal 

settlements. One strand of this literature is based on (human) visual interpretation of very high 

resolution images19,20. A growing body of studies employs machine learning methods enabling 

automated (machine-based) identification of informal settlements, such as object-based image 

analysis21,22 and more recently deep learning23–25. However, these studies are typically restricted 

to one or very few small geographic areas (e.g., mapping several informal settlements in one 

specific city or in a few different cities) due to the enormous data storage and computing 

capacity required for processing very high resolution (<1m/pixel) satellite imagery. Few studies 

so far have mapped informal settlements on a larger geographical scale using high (1m-

5m/pixel) or medium resolution (5m-30m/pixel) satellite imagery, and even these are restricted 

to only a few cities and do not track changes over time26,27. While few studies have applied 

deep learning to map economic conditions at a larger scale, e.g., across Nigeria at 7.65 km 

grids28 and across sub-Saharan Africa at 1.6km grids29, these studies did not focus on urban 

informal settlements but mapped poverty and wealth. Further, their approach doesn’t allow 

tracking spatiotemporal dynamics within cities. 
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Here we apply deep learning to open-access Sentinel-2 optical satellite imagery30 to identify 

and map informal settlements in 529 cities from 44 countries across sub-Saharan Africa from 

2016 to 2022. We use these predictions to estimate the share of the urban area covered by, and 

the share and total count of the urban population living in informal settlements, as well as 

changes in these three indicators during the study period – both at the city and at the country 

level. By utilizing open-access medium resolution instead of commercial very high resolution 

imagery, any purchasing costs were avoided making our study fully reproducible. In addition, 

computational and data storage requirements were significantly reduced – enabling us to 

strongly expand the spatial and temporal coverage in comparison to existing studies. Our 

prediction models combine Sentinel-2 satellite images30 with shapefiles of the exact locations 

and boundaries of known informal settlements in 16 African cities from six countries (Extended 

Data Fig. 1) to predict the locations and extent of informal settlements in cities and years 

without existing ground truth data. For a given city in a specific year, the algorithm produced a 

raster map with pixel values ranging from 0 to 1. While the pixel values are not rigorous, 

calibrated probabilities, but rather approximations through our learned classifier, they can be 

interpreted as a score of informal settlement probability. These ‘probability maps’ can be used 

to infer the locations and extent of informal settlements within cities and track their spatial 

development over time. Calibrated threshold values were then applied to produce binary maps 

of informal settlement locations. In conjunction with Africapolis shapefiles on city boundaries31 

and WorldPop data on within-city population distribution32, these were used to calculate city- 

and country-level estimates of informal settlement prevalence, including population shares and 

totals.  
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Results 

Case study: Mapping informal settlements in Johannesburg/Pretoria, South Africa 

We first present a case study of the greater area of Johannesburg/Pretoria, South Africa (for 

which we did not have any ground truth data) that demonstrates how our prediction maps can 

be used to identify locations of informal settlements within cities and new hotspots areas.   

 

Figure 1 | Predicted informal settlement locations in Johannesburg/Pretoria, South Africa (2022). Brighter 

yellow indicates a higher probability of informal settlement coverage. IS prob. stands for informal settlement 

probability. Red ellipses with name tags correspond to known and verified informal settlements. Unnamed red 

ellipses correspond to unknown but verified informal settlements. Unnamed white ellipses mean verified as not 

informal settlements.  
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Figure 1 shows a 10m resolution map of the probability that each 10m pixel in this urban 

agglomeration contains informal settlements – with brighter yellow indicating higher 

probabilities. The map was annotated with the names and approximate locations and sizes of 

17 of the largest and commonly known informal settlements – called “townships” in South 

Africa – (red ellipses with name tags), visually verified on concurrent high resolution earth 

observation data33. All 17 townships can be visually identified in our prediction map. Notably, 

the predicted probability varies also across townships, potentially indicating varying degrees of 

deprivation, from very poor settlements characterized by high population and building density 

and mostly small corrugated-iron shacks (e.g., Diepsloot)34 versus more diverse settlements 

with mixed-income groups and a history of slum upgrading (e.g., Soweto)35. In addition, several 

other smaller informal settlements with unknown names (unnamed red ellipses) are apparent in 

the map – visual interpretation of concurrent Google Maps/Satellite images33 verified that these 

locations coincide with informal settlements. While there are also cases of locally brighter areas 

on the map that turned out to be misclassifications after verification (unnamed white ellipses), 

these were few and they only cover very small areas with ambiguous visual and spectral 

appearance. Consequently, such misclassifications should not have a tangible effect on city- or 

country-level estimates of informal settlement prevalence. 

Mapping the spatiotemporal development of informal settlements within cities  

Next, we show the spatial development of informal settlements over time. We present 

exemplarily the results for four major cities in four regions in sub-Saharan Africa (Extended 

Data Fig. 2): Accra, Ghana (West); Luanda, Angola (Middle); Dar es Salaam, Tanzania (East); 

and Windhoek, Namibia (Southern). Results are available for all 529 studied cities 

(https://gitlab.renkulab.io/deeplnafrica/deepLNAfrica/-/tree/main/change_figures).  

  

https://gitlab.renkulab.io/deeplnafrica/deepLNAfrica/-/tree/main/change_figures
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Figure 2 | Predicted spatiotemporal development of informal settlements in four major sub-Saharan 

African cities (2016–2022). Predicted probability of informal settlement coverage in 2016 (a, d, g, j), 2022 (b, 

e, h, k), and change in predicted informal settlement status between 2016 and 2022 (c, f, i, l). IS stands for 

informal settlement. The color scale is truncated at 0.8 in in first two columns. 

 

Figure 2 shows the predicted informal settlement probabilities in 2016 and 2022 and where, 

over the observation period, new informal settlements emerged, existing ones dissolved, or 

nothing changed (based on binary segmentation maps, see Methods). The four cities displayed 
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vastly different spatiotemporal dynamics between 2016 and 2022. In Ghana, informal 

settlements were most common in the Central/Southern area (in coastal proximity) of the city 

in 2016, while the East, and the far Southeast and North were least affected. However, informal 

settlements seem to have expanded strongly into the Southwest and North of the city until 2022, 

while the center experienced occasional improvements in housing conditions. In Luanda, 

informal settlements were located mostly in the North, but expanded into vast parts of the 

Southwest, South, and East of the city (with improving conditions in the Northwest). Dar es 

Salaam, a city with large shares of its area covered by informal settlements (with the highest 

severity in 2016 in the Center/South), experienced moderate growth of informal settlements in 

its entire periphery and moderate improvement in the Center/South area. Informal settlements 

in Windhoek were concentrated almost exclusively in the North and Northeast – and this spatial 

pattern intensified between 2016 and 2022.  

City-level estimates of informal settlement prevalence and growth across sub-Saharan Africa 

Calibrated binarization and aggregation of the raw within-city prediction maps (see Methods) 

enabled us to estimate the prevalence and growth of informal settlements at the city level. Figure 

3 maps the share of the urban population living in and the share of the urban area covered by 

informal settlements for 529 major cities (>100,000 inhabitants in 2015) in 2016 and 2022, and 

its change between 2016 and 2022. The maps show a high prevalence as well as an expansion 

of informal settlements (both in area and population share) in many African cities. The full 

results for all 529 covered cities, including additional estimates on the total urban population 

living in informal settlements, are provided in the Supplementary Information (Supplementary 

Table 4). 
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Figure 3 | City-level estimates of informal settlement prevalence and growth across sub-Saharan Africa 

(2016–2022). a-c, Share of the urban population living in informal settlements in 2016 (a), 2022 (b), and change 

between 2016 and 2022 (c). d-f, Share of the urban area covered by informal settlements in 2016 (d), 2022 (e), 

and change between 2016 and 2022 (f). Circle area is proportional to cities’ total population size (in 2015, 

according to Africapolis estimates31). 

 

The number of cities with a share of the urban population living in informal settlements 

exceeding 50% increased from 155 in 2016 to 274 out of 529 in 2022. In the same period, the 

share of the urban population living in informal settlements increased in 84% of all cities – the 

majority (320 cities) experienced an increase of between 0 and 25 percentage points (pp). Only 

in 82 of 529 cities a decrease in the share of the urban population living in informal settlements 

was observed (Extended Data Figs 3 and 4).  

Our estimates also reveal interesting spatiotemporal dynamics. In 2016, on average, the share 

of the urban population living in informal settlements was highest in East African cities with 

40%, followed by Middle (37%), West (30%), and lastly Southern African cities (17%). 

However, due to differential growth dynamics, this order changed until 2022 with Middle 

African cities now having the largest share of the urban population living in informal 
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settlements (58%), followed by East (52%), West (48%), and lastly Southern African cities 

(19%).  

In 2022, there were 41 cities with more than 80% of their population living in informal 

settlements – among them 11 in DR Congo, 10 in Ethiopia, 5 in Kenya, and 4 in Angola. The 

ten cities with the highest estimated total number of inhabitants living in informal settlements 

were Luanda, Angola (5.9M); Lagos, Nigeria (5.7M); Kinshasa, DR Congo (3.6M); Dar es 

Salaam, Tanzania (3.2M); Kampala, Uganda (2.9M); Nairobi, Kenya (2.9M); Abidjan, Côte 

d’Ivoire (2.7M); Addis Ababa, Ethiopia (2.5M); Bamako, Mali (2.4M); and Kano, Nigeria 

(2.4M).  

In 50 cities, the share of the population living in informal settlements had increased by more 

than 40 pp between 2016 and 2022 – among them 23 in Nigeria, 11 in DR Congo, and three in 

Kenya and Uganda each. The ten cities with the highest estimated absolute increase in their 

population living in informal settlements were Lagos, Nigeria; Luanda, Angola; Ibadan, 

Nigeria; Kinshasa, DR Congo; Yaoundé, Cameroon; Douala, Cameroon; Khartoum, Sudan; 

Bamako, Mali; Hawassa, Ethiopia; and Abidjan, Côte d’Ivoire – each with more than 800,000 

additional informal settlement dwellers in 2022 compared to 2016.  

Middle African cities also displayed the highest estimated shares of their area covered by 

informal settlements (56%), followed by similar shares in East (45%) and West (44%), and 

markedly lower shares in Southern African (13%) cities in 2022. Overall, informal settlement 

prevalence was noticeably lower when measuring it as the area covered by them as compared 

to the population living in them. However, this difference decreased over the study period, i.e., 

the growth of informal settlements was, on average, driven more by their spatial expansion than 

by population growth within already existing informal areas. Yet the gap between the area-

based and the population-based measure remains pronounced, indicating a comparably high 
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population density in informal settlements – which is to be expected in light of the UN-Habitat 

slum deprivation criteria “lack of sufficient living area”3.   

Country-level estimates of informal settlement prevalence and change in sub-Saharan Africa 

Figure 4 maps the share of the urban population living in, and the share of the urban area 

covered by informal settlements for 44 countries in sub-Saharan Africa in 2016 and 2022, and 

its change between 2016 and 2022, according to our model. The full results for all 44 covered 

countries, including additional estimates on the total urban population living in informal 

settlements, are provided in the Supplementary Information (Supplementary Table 5). 

 

 

Figure 4 | Country-level estimates of informal settlement prevalence and growth across sub-Saharan 

Africa (2016–2022). a-c, Share of the urban population living in informal settlements in 2016 (a), 2022 (b), and 

change between 2016 and 2022 (c). d-f, Share of the urban area covered by informal settlements in 2016 (d), 

2022 (e), and change between 2016 and 2022 (f). 
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While in 2016 the share of the urban population living in informal settlements exceeded 50% 

in 14 out of 44 countries, this increased to 25 countries in 2022. Between 2016 and 2022, in all 

except eight countries, the share of the urban population living in informal settlements 

increased, and the unweighted mean share across all 44 countries increased from 40% in 2016 

to 51% in 2022.  

The spatial patterns at the country level differ to some extent to those observed at the city level. 

In 2016, West African countries had on average the highest estimated share of their urban 

population living in informal settlements with 44%, followed by East (41%), Middle (37%), 

and with much distance Southern African countries (24%). By 2022, these numbers rose to 55% 

in both West and Middle African countries, closely followed by East (51%), and again at last 

Southern African countries (29%). Stark regional discrepancies also pertain to the growth of 

the informal settlement population. Between 2016 and 2022 the share of the informal settlement 

population grew by far the strongest in Middle African countries with on average 18 pp, and by 

11 pp, 10 pp, and 5 pp in West, East, and Southern African countries, respectively.  

In 2022 the ten countries with the highest share of urban dwellers in informal settlements were 

Central African Republic (85%), Liberia (76%), Somalia (75%), Ethiopia (72%), Sierra Leone 

(72%), Malawi (71%), Guinea-Bissau (71%), Chad (69%), Uganda (69%), and Niger (67%) – 

four in each East and West and two in Middle Africa.  The ten countries with the highest 

increase between 2016 and 2022 were Cameroon (41 pp), Niger (36 pp), Sudan (34 pp), Gabon 

(30 pp), Central African Republic (26 pp), Burkina Faso (25 pp), DR Congo (25 pp), Nigeria 

(25 pp), Somalia (23 pp), and Uganda (18 pp).    

As in the city-level analysis, the spatiotemporal patterns of informal settlement prevalence and 

growth remain similar when focusing on an area-based rather than on a population-based 

measure. 
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Discussion 

Our findings suggest a high prevalence as well as a fast expansion of urban informal settlements 

across sub-Saharan Africa. According to our estimates, 84% of all analyzed cities experienced 

an increase in the share of the population living in informal settlements between 2016 and 2022. 

By 2022, in more than half of all cities, at least half of the population lived in informal 

settlements. We also found strong heterogeneities in both prevalence and growth between and 

within countries. Overall, both the share of the urban informal settlement population in 2022 as 

well as its growth between 2016 and 2022 tend to be particularly high in Middle and West 

Africa, closely followed by East Africa, whereas both the level and growth rates are much lower 

in Southern Africa. The observed increase in the share of the population living in informal 

settlements across most major cities in sub-Saharan Africa stands in contrast to the trends 

published by UN-Habitat. According to their Urban Indicators Database, the share of the urban 

population living in informal settlements in sub-Saharan Africa has continuously (though 

slowly) decreased in the past two decades – from 64.1% in 2000 to 57.3% in 2010 and 50.2% 

in 20201.  

This discrepancy might partly be explained by some key differences between our estimation 

approach and the conventional survey- and census-based approach employed by UN-Habitat 

and other institutions to track SDG 11.1. First, given the three- to five-year survey intervals13, 

the biannual publications of UN-Habitat have to conduct some extrapolations, while satellite 

data allows estimates for all places of interest on a true annual basis. For example, only four 

DHS (2003, 2010, 2014, 2018) were conducted in Burkina Faso between 2000 and 202036. 

Second, survey-based approaches capture informal settlements based on household-level data, 

while our approach more accurately classifies contiguous geographic areas as informal 

settlements. Our estimates should thus be less sensitive to improvements in specific deprivation 

indicators of a few households when the neighborhood overall remains deprived. An analysis 
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of DHS data from Ouagadougou, Burkina Faso, suggests a strong decrease in the share of 

inhabitants living in informal settlements between 2014 (40%) and 2018 (29%), mostly driven 

by a decrease in overcrowded households37,38. By contrast, we estimated a strong increase 

between 2016 and 2022, from 29% to 54%. Our approach also focuses, by definition, on 

geographical and morphological characteristics of areas detected by satellite sensors. Dense, 

unstructured construction patterns and substandard roof materials are more easily captured than 

lack of access to water and sanitation, yet these indicators are generally strongly correlated.  

The third and most important difference lies in the sampling procedure of cities within countries 

and of the population within cities. While the delineation between urban and rural PSUs in 

surveys may differ between countries (and over time), we use one standardized database of 

cities across all countries31. Further, instead of a random sub-sample of cities, we use all (major) 

cities of a country. Our city database also has the advantage that it generally encompasses not 

just the official city proper but the entire contiguously built-up area of an urban agglomeration, 

including the periphery39. The latter might be missed in many household surveys, especially if 

growth in the urban periphery is unplanned and if sampling frames are not continuously 

updated. Extended Data Figure 5 illustrates this issue exemplarily for Ouagadougou, Burkina 

Faso. It shows that almost all DHS 201838 PSUs were located in the city’s central area, while 

large parts of the urban periphery were not covered. According to our predictions, however, 

these were exactly the areas where Ouagadougou experienced most of its informal settlement 

growth. Importantly, our probability maps (Fig. 2 and 

https://gitlab.renkulab.io/deeplnafrica/deepLNAfrica/-/tree/main/change_figures) reveal that 

informal settlement expansion in many cities took place predominantly in such peripheral areas 

of urban agglomerations.  

UN-Habitat continues to emphasize the responsibility of National Statistical Offices (NSOs) 

for the collection and analysis of household survey and census data on informal settlements40. 

https://gitlab.renkulab.io/deeplnafrica/deepLNAfrica/-/tree/main/change_figures
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Given the above-described limitations of survey and census data, monitoring SDG 11.1 solely 

based on these data sources certainly remains challenging. At the same time, UN-Habitat also 

acknowledges the capacity of satellite imagery and machine learning methods to “provide 

precise information on the area physical [and] social characteristics […] generating results 

comparable across cities and countries” in its Urban SDG Monitoring Series13.  

In light of the high prevalence of urban informal settlements across sub-Saharan Africa and in 

particular given the adverse trends observed between 2016 and 2022, achieving SDG 11.1 is a 

long way away, according to our estimates. Extrapolating our estimated trends suggests that not 

a single country in sub-Saharan Africa will reduce the share of its urban population living in 

informal settlements to less than 10% by 2030. Furthermore, the growth rate of the urban 

population is projected to stay over 3% per year in sub-Saharan Africa over the next two 

decades2. This puts additional pressure on African cities and potential progress in relative terms 

might in many cities be counteracted by a regress in absolute terms, i.e., increasing total 

numbers of informal settlement dwellers despite a decrease in the share of the urban population 

living in informal settlements. Targeted efforts of slum upgrading and provision of new and 

adequate housing in Africa’s megacities as well as in other large and fast-growing cities could 

improve the living conditions of many current and future urban dwellers.  

In addition to continuously monitoring city- and country-level trends on an annual basis, our 

proposed machine learning pipeline is well-suited to identify likely locations of informal 

settlements within cities and track their spatial-temporal development (expansion or reduction). 

Our approach can support international organizations in allocating resources between countries 

and national policymakers in sub-Saharan Africa to balance efforts between cities as well as to 

identify those locations and populations most in need even within cities. 
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Future work and caveats 

Our present study offers a methodological and analytical framework to map urban informal 

settlements across sub-Saharan Africa and monitor their spatiotemporal development. Along 

these lines, we plan to provide annual extensions of our estimates. In this study, we focused on 

major cities of at least 100,000 inhabitants, but future work could extend our estimates to 

include also smaller cities. Moreover, on the condition of the availability of suitable ground 

truth data, our approach could potentially be applied in other world regions, in particular those 

affected by high levels of urbanization and informal settlement prevalence, such as South Asia1. 

As a next step, we plan to combine the data products of the present study – maps of predicted 

informal settlement locations in sub-Saharan African cities – with georeferenced survey data to 

investigate disparities in socioeconomic development between residents of informal settlements 

and formal neighborhoods.  

The accuracy of our results depends primarily on the quality and quantity of ground truth data 

on informal settlements and of satellite images. First, including ground truth data from 

additional cities, in particular from countries without any ground truth data yet, could further 

improve the accuracy of our predictions by increasing the geographical and morphological 

diversity of the training data. Whenever such novel ground truth data becomes publicly 

available, it could easily be added to our machine learning pipeline and used to refine and update 

our predictions. Second, the accuracy of a prediction for a given city depends on the number of 

available satellite images with sufficiently low cloud coverage for this city. Naturally, this is 

highly correlated with climatic conditions, so that some cities are more affected by this caveat. 

However, limited availability of low-cloud-coverage images concerns only few cities 

(Supplementary Figs 1 and 2), and any biases should be negligible at the country-level. In 

addition, continuous improvements in cloud coverage correction algorithms will further 

mitigate this issue. Lastly, our predictions could be further improved by using satellite imagery 
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products of higher spatial resolution once these still prohibitively costly products become 

publicly accessible.  
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Methods 

Overview 

Our study provides estimates of the prevalence of informal settlements in sub-Saharan Africa 

at the city- and country-level, based on a machine learning pipeline utilizing state-of-the-art 

deep learning methods for computer vision applications. We estimated the share of the urban 

area covered by, the share of the urban population, and the total urban population living in 

informal settlements in 2016 and 2022, as well as the changes in these measures over the study 

period. The study covers 529 cities from 44 countries – 195 (16) cities (countries) in East, 85 

(8) in Middle, 56 (5) in Southern, and 193 (15) in West Africa (Extended Data Fig. 2). Our 

primary goal was to map the prevalence and spatiotemporal development of informal 

settlements across urban sub-Saharan Africa. Our machine learning pipeline combines ground 

truth data on known informal settlements from 16 cities in six countries and open-access 

Sentinel-2 satellite imagery30 and uses ensemble models for out-of-sample predictions (i.e., 

cities or years not seen at training time) producing raster files that map the pixel-level 

probability of informal settlement coverage at 10m resolution. These raster files are readily 

usable to identify informal settlements within cities and track their spatiotemporal development. 

After binarization of these raster files with calibrated threshold values, geospatial analysis 

techniques were applied to calculate the aforementioned aggregate city- and country-level 

estimates. A detailed description of all data sources, the machine learning model, the analysis, 

and the associated limitations are provided below and in the Supplementary Information.  
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Data 

Ground truth data of known informal settlements 

Extended Data Figure 1 and Supplementary Table 1 provide an overview of our ground truth 

data of informal settlements. We were able to identify and access geospatial data on informal 

settlements from 16 cities in six countries: Kenya (Kisumu and Nairobi), Sierra Leone 

(Freetown), South Africa (Cape Town, Durban, Embalenhle, Lebohang), Sudan (Nyala), 

Tanzania (Arusha, Dodoma, Kigoma, Mbeya, Mtwara, Mwanza, Tanga), and Uganda 

(Kampala).  

As the various datasets come from different providers, they differ in terms of their geographic 

coverage (covering selected areas of a city versus the entire city), their reference year (data 

collection/map creation), and data format (shapefile/GeoPDF). They also differ to some extent 

in what exactly is mapped. Some providers map informal settlements in a rather fragmented 

way, including many very small clusters/pockets of sometimes just a few informal dwellings, 

while other approaches are broader, focusing on the exterior boundaries of a bigger informally 

dominated neighborhood (also including some open spaces, roads, public buildings, etc.). In 

addition, some providers not only map informal settlements but provide explicit spatial 

information on formal residential areas and other land use categories.  

The ground truth datasets used to train our models were created by third parties, following three 

different approaches. 1) Field-based mapping: A team of fieldworkers equipped with GPS-

tracking devices walks through areas pre-selected by domain and local experts to outline the 

boundaries of informal settlements. 2) Visual interpretation: Domain experts visually interpret 

very high resolution satellite images and identify informal settlements based on physical 

features under consideration of the local context. 3) Digitization of hard copy maps (issued by 

government authorities) where informal settlements are already outlined. All three methods 
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generally provide maps of very high accuracy due to a high level of expert knowledge involved 

and a narrow geographic focus.   

We used the ground truth data from all cities in South Africa and Tanzania without further 

manipulation. In the case of Sierra Leone, we applied minor adjustments, like dissolving 

overlapping polygons of adjacent settlements and filling small holes within polygons. In the 

case of Kenya, Sudan, and Uganda, however, we had to manually create polygons by hand-

drawing boundaries of informal settlements in QGIS41, based on maps provided in GeoPDF or 

PDF format. In all cases, the final product for each city was a raster map in GeoTIFF format 

with a spatial resolution of 10m per pixel, with each pixel classified as 1 (= informal settlement) 

or 0 (= no informal settlement). 

 

Satellite imagery – Sentinel-2 

We used openly accessible satellite imagery from the Sentinel-2 mission of the European 

Union’s Earth Observation Programme Copernicus30 to train a deep neural network based on 

deep learning methods. The Sentinel-2 mission was launched in June 2015 and since then 

provides daytime satellite images of the entire globe, recorded every few days and with a 

maximum spatial resolution of 10m per pixel. Sentinel-2 images are pre-processed, including 

corrections for atmospheric distortions, and contain pixel-level information, for example on 

cloud coverage, which is important for neural network training. From the 13 available spectral 

channels, we only kept the Red, Green, Blue, and Near Infrared (NIR) bands, as these are the 

only ones that come at the maximum spatial resolution of 10m per pixel and contain the 

necessary visual attributes to distinguish patterns of informal settlements.  

For each city and year of interest, we used all available images with a cloud coverage of less 

than 15%. Images with higher cloud coverage are undesirable, as pixels covered by clouds 

cannot be assessed accurately and are thus simply set to 0 (see below). Information on the 
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number of utilized images per city (Supplementary Fig. 1) and per country (averaged, 

Supplementary Fig. 2) are provided in the Supplementary Information and further discussed in 

the Limitations. Before using the satellite images in neural network training, we clipped 

Sentinel-2 images30 to a bounding box around the ground truth data representing informal 

settlements, such that the satellite images and the ground truth maps align. When evaluating the 

neural network on other African cities without ground truth data, we clipped the satellite images 

to the city boundaries defined by Africapolis31,39 (see below). 

 

City polygons – Africapolis 

Mapping informal settlements in African cities requires a database with information on the 

location, size, and boundaries of the continent’s cities. This is not trivial given that the very 

definition of what a city is and how exactly its boundaries should be delineated varies from 

country to country and over time. It can be based on administrative, numerical, or functional 

criteria or a combination of these. We thus drew on the Africapolis database which provides a 

shapefile containing polygons of urban agglomerations from 54 African countries31. Africapolis 

utilizes data from censuses, electoral registers, and official administrative boundaries, and 

combines them with satellite and aerial images to map urbanization on the African continent. 

Using these data sources, Africapolis forms agglomerations based on a physical criterion 

(continuously built-up area: less than 200 meters distance between buildings and constructions) 

and a demographic criterion (more than 10,000 inhabitants in 2015)39. In high-density areas, 

this regularly leads to city polygons combining two official cities into one and including several 

suburbs, such as for Maputo-Matola in Mozambique and Johannesburg-Pretoria in South Africa 

(Extended Data Fig. 6). The Africapolis database contains a total of 7,720 urban 

agglomerations: 75 with more than 1 million inhabitants, 644 with between 100,000 and 1 

million inhabitants, and 7,001 with between 10,000 and 100,000 inhabitants (in 2015, estimates 
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by Africapolis). We restricted our analysis to all major cities (>100,000 inhabitants) in sub-

Saharan Africa (excluding the North African countries Algeria, Egypt, Libya, Morocco, and 

Tunisia; and the small island states Comoros, Cape Verde, Mauritius, Réuntion, and São Tomé 

and Príncipe), leading to a total of 529 cities. The restriction to cities with more than 100,000 

inhabitants served to increase computational efficiency and save data storage demands and the 

focus on sub-Saharan Africa, excluding small island states, served to increase comparability 

across cities and countries.  

 

Population distribution data – WorldPop 

In order to estimate not just the share of the urban area covered by informal settlements, but 

also the share of the urban population living in these areas, information about the spatial 

distribution of the population within cities and over time is necessary. We retrieved this 

information from the WorldPop database of population counts, specifically from their product 

“Unconstrained individual countries 2000-2020 UN adjusted (100m)”32. The population counts 

datasets come as raster files with a spatial resolution of approximately 100m per pixel and 

provide for each country globally and from 2000 to 2020 an estimate of the number of 

inhabitants per pixel. These estimates are based on a combination of census data with various 

geospatial covariates, such as land cover, nighttime lights, temperature, roads, buildings, etc. 

The version used in this study is also adjusted such that country totals correspond to the official 

UN population estimates.  
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Machine learning pipeline 

Basic training set-up 

For our neural network, we applied a widely used state-of-the-art architecture for semantic 

image segmentation – the DeepLabV3 system42 with a ResNet-50 backbone43. For any image 

input, this model generates an output of the same size, where every pixel contains a value 

between 0 and 1, indicating the probability of this pixel belonging to an informal settlement. At 

every training step, the neural network receives a batch of satellite image tiles of a given size, 

and for every one of them produces these probability maps, which are then compared to the 

binary ground truth tiles belonging to the same locations. Over many training iterations, the 

model learns to segment informal settlements by minimizing the binary cross-entropy between 

its own outputs and the ground truth. Optimization of the model’s parameters is done through 

the AdamW optimization algorithm44. To help the neural network distinguish formal from 

informal settlements better, we additionally increase the weight of the binary cross-entropy loss 

function for every pixel that belongs to a formal settlement, whenever this information is also 

available to us. Finally, we further adjust the weighting of the loss based on the overall ratio of 

informal settlements in our training images. 

Through our analysis, we concluded that it is relatively difficult for our model to generalize to 

other African cities that have not been seen at training time, even if it was trained in many cities 

from several countries at the same time. For this reason, we decided to train many different 

models on different groupings of cities and to gather their predictions for any new city. Such 

an ensemble of models generally provides more robustness through this averaging effect of 

utilizing multiple models trained on different data45.  

In Tanzania, where we have recent ground truth data for seven cities (Arusha, Dodoma, 

Kigoma, Mbeya, Mtwara, Mwanza, and Tanga), we trained seven different models, each of 

them trained on six of the cities and evaluated on the remaining one after every training epoch. 
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Leaving one city out of every training process allowed us to validate how well our current 

model was able to generalize to unseen data, and to save the model at a specific moment in time 

when this generalization was best. For Kenya, we applied the same procedure for the seven 

available ground truth maps (Kisumu, Nairobi-Kawangware, Nairobi-Kibera, Nairobi-Mathare, 

Nairobi-Eastleigh, Nairobi-Korochogo, Nairobi-Viwandani). To balance the large number of 

informal settlements in our training data from Kenya with more formal settlements, we also 

included three completely formal locations (Nairobi-Lavington, Nairobi-Muthaiga, Nairobi-

Runda) in each training process. In South Africa (Cape Town, Durban, Embalenhle, and 

Lebohang), we only trained two models, excluding either Embalenhle or Lebohang since we 

considered the generalization of a model trained without either Cape Town or Durban as not 

satisfactory. As the last model, we paired the data from Freetown (Sierra Leone), Kampala 

(Uganda), and Nyala (Sudan) with the already used data from Mtwara (Tanzania), Embalenhle 

(South Africa), and Kisumu (Kenya). We did this because we found that adding one city from 

Tanzania, South Africa, and Kenya each improved the performance of this model. For the 

validation of this model, we used all other cities. 

 

Model adjustments and self-supervised learning 

To increase diversity between the models, we also varied the size of the tiles taken from the full 

satellite images. For all models from Tanzania, we used tile sizes of 512x512 pixels (roughly 

26 km2 tiles), whereas we used 128x128 (1.5 km2) tiles for all Kenyan models and 256x256 

(6.5 km2) tiles for the South African models as well as for the final model on Freetown, 

Kampala, Nyala, Mtwara, Embalenhle, and Kisumu. Regardless of the specific tile size, we 

selected the tiles with random shifts but equally spread across all parts of the images during 

training. Furthermore, we applied the same pre-processing steps for all cities. All image tiles 

were normalized by the mean and standard deviation of each spectral band which we computed 
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for more than 2,000 satellite images across sub-Saharan Africa. Moreover, for all ground truth 

tiles, we set the pixel value to 0 (= no informal settlement) for all pixels affected by cloud 

coverage. 

We further improved the performance of our models significantly by starting the supervised 

training procedures with neural network weights initialized through a pre-training step. This 

pre-training step employs a relatively recent paradigm in machine learning, known as self-

supervised learning46. Self-supervised learning describes methods that don’t utilize explicit, 

human-annotated ground truth information but that automatically create their own supervisory 

learning signals from unlabeled data. It has been shown that initializing model weights by pre-

training them in a self-supervised manner can lead to a sharp increase in downstream 

performance on supervised tasks46. In our case, we modified the Barlow Twins method47, using 

our network architecture as the encoder model. The goal of Barlow Twins is to learn latent 

representations within the deep learning model which lead to uncorrelated features that are 

invariant to certain specific artificial distortions applied to image inputs. In contrast to the 

original Barlow Twins method, we didn’t apply artificial distortions to natural images but 

utilized temporal Sentinel-2 satellite images30. Concretely, in every pre-training step, we 

encoded a batch of unlabeled satellite images with our segmentation network that was 

augmented with three attached fully connected layers. We then also encoded a second batch of 

satellite images from the exact same locations as those in the first batch but taken at a different 

point in time. That allowed us to apply the Barlow Twins idea47 of learning latent image 

representations with uncorrelated latent features that are also invariant to the differences 

between corresponding images in the two batches. The underlying idea here was to pre-train 

our models to become insensitive and possibly invariant to the differences between satellite 

images from the same location, taken at a different time. This is sensible because most visual 

differences between the images would either come from seasonal or atmospheric effects (which 

are unimportant for informal settlements prediction) or discolorations due to pre-processing 
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steps such as the atmospheric correction. On the other hand, assuming that the time difference 

between the images is not too large, we expected that visual changes due to important structural 

differences would be comparatively infrequent. Most importantly, we found that initializing our 

model weights for the supervised training on informal settlements based on this self-supervised 

pre-training step significantly enhanced our downstream predictions. 

 

Ensemble predictions 

After completion of the full training of all models, we aggregated their predictions as motivated 

above. In this prediction process, any satellite image from a new city was fed through each 

network after tiling, to match the tile size that the current model was trained with. This means 

that from left to right, top to bottom, we segmented informal settlements in each tile after the 

other (with some overlap over the tiles to avoid unwanted effects at the tile borders), until we 

could assemble these tiles to a full segmentation over the whole image. Once this was done, we 

first averaged the segmentation maps across all cities in a given country. This was only 

applicable for Tanzania, Kenya, and South Africa, where we had several models per country. 

Finally, we then took a weighted average of the final four segmentation maps (one each for 

Tanzania, Kenya, South Africa, and the final one for Freetown-Kampala-Nyala-Mtwara-

Embalenhle-Kisumu) with weights according to their estimated strength based on the amount 

and quality of their training data. To be precise, we assigned a weight of 0.3 to both the Tanzania 

and the Kenya model and a weight of 0.2 to each of the other two models. The final raw product 

for each city in a given year was a raster file at a spatial resolution of 10m per pixel with 

continuous pixel values ranging from 0 to 1. The higher the pixel value, the higher the predicted 

probability that this pixel was covered by an informal settlement. These ‘probability maps’ can 

readily be used to infer nuanced spatiotemporal patterns of informal settlement locations within 
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cities. A simplified graphical illustration of the entire machine learning pipeline, including 

training and prediction, is provided in Extended Data Figure 7. 

 

Analysis 

Binarization of segmentation maps  

Prior to calculating city- and country-level estimates of informal settlement prevalence, we 

converted the continuous probability maps into binary maps such that each pixel was either 0 

(= no informal settlement) or 1 (= informal settlement). Given the broad spatial scope of our 

study and the non-negligible differences across countries in terms of geographical and in 

particular morphological features in urban areas, we decided against a uniform threshold value 

to be applied to all 529 cities. Instead, we applied the following iterative procedure. First, we 

applied for each city three different intuitive threshold values to the continuous probability map 

– 1/5, 1/4, and 1/3 – yielding three binary maps per city and year. Based on these maps (in 

conjunction with the population count data32), we calculated three alternative country-level 

estimates of the share of the urban population living in informal settlements (see Geospatial 

analysis for more details) for the year 2020. We next compared these estimates to the 

corresponding estimates provided by UN-Habitat1. For each country, we then settled on one 

threshold value such that the difference between our estimates and the UN-Habitat estimates 

were minimized (Supplementary Table 2). For countries without UN-Habitat data, we selected 

the modal threshold value of all neighboring countries. After this calibration, the correlation 

coefficient between our estimates and the UN-Habitat estimates of 2020 was very large with 

r=0.79 (Extended Data Fig. 8), and for the majority of countries, the modulus difference 

between our estimates and the UN-Habitat estimates was smaller than 5 pp (16 countries) or 

smaller than 10 pp (10 countries) (Extended Data Fig. 9). 
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Performance evaluation 

The performance of machine learning models for binary classification tasks can be evaluated 

through various accuracy metrics. For our specific task, three metrics are particularly 

informative. Recall (also Sensitivity or True Positive Rate, TPR), Precision (also Positive 

Predictive Value, PPV), and the F1 Score, which are calculated as follows: 

𝑇𝑃𝑅 =
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𝑃
=

𝑇𝑃
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Where T/F/P/N stand for true/false/positive/negative. Both the TPR and the PPV measure the 

ability of the model to correctly identify pixels covered by informal settlements (TP) – the TPR 

in relation to the actual extent of informal settlements in the ground truth (P or TP+FN), and 

the PPV in relation to all predicted informal settlement pixels (TP+FP). The F1 score is the 

harmonic mean of TPR and PPV and thus a composite measure of Recall and Precision. 

Supplementary Table 3 provides these test metrics for all cities with available ground truth data 

from Kenya, South Africa, and Tanzania, based on the country-specific models. This means 

that the prediction and corresponding test metrics on, for example, Arusha, Tanzania, were 

based on a model that included all cities from Tanzania, except Arusha, as training data. 

Excluding the city of interest is crucial to retrieve informative test metrics, as the goal of our 

study was to predict informal settlements in cities without any ground truth data. For increased 

transparency, we also included three additional accuracy measures, namely (overall) Accuracy, 

Specificity (True Negative Rate, TNR), and Intersection over Union (IoU). Given the limited 

amount of ground truth data, we generally reach satisfactory accuracy measures. Precision 

ranged from 32.51% (Kigoma, Tanzania) to 73.06% (Nairobi-Eastleigh, Kenya), Recall from 

25.90% (Kigoma, Tanzania) to 97.63% (Nairobi-Mathare, Kenya) and the F1 Score from 
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28.72% (Kigoma, Tanzania) to 81.30% (Nairobi-Korochogo, Kenya). The corresponding mean 

(median) across all cities were 59.31% (64.58%) for Precision, 70.45% (72.01%) for Recall, 

and 62.55% (63.21%) for the F1 Score, respectively. These test statistics were complemented 

with the Precision-Recall Curve and the Receiver Operating Characteristic (ROC) Curve 

(Supplementary Fig. 3), for each city. Both identify the ideal binary threshold value that either 

jointly optimize Precision and Recall or jointly optimize the TPR and FPR.  

Lastly, Supplementary Figure 4 visualizes the performance of our predictions within cities, i.e., 

it shows the distribution of true/false positives/negatives across pixels within cities with ground 

truth data. From left to right, the panels show 1) the input Sentinel-2 satellite image, 2) the 

binary ground truth raster, 3) the raw (continuous) prediction map, 4) the binary segmentation 

map, and 5) the classification of pixels into true positives (green), false positives (red), true 

negatives (white), and false negatives (blue). The visualizations confirm the findings from the 

test metrics – our models are generally well-suited to correctly identify informal settlements, 

yet with varying degrees of precision and sensitivity across cities, according to the quality and 

complexity of each image to be analyzed.  

 

Geospatial analysis 

Based on the binary segmentation maps containing per-pixel information on predicted informal 

settlement probability, we conducted several geospatial analyses. We calculated 1) at the city 

level and 2) at the country level the a) share of the urban area covered by informal settlements 

(ShA), b) the share of the urban population living in informal settlements (ShP), and c) the total 

urban population living in informal settlements (TotP). The following equations illustrate these 

calculations: 
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Ibin is a pixel-level binary indicator of informal settlement coverage, P is the WorldPop 

population count estimate per pixel, c stands for city or country, t for time (year), and N is the 

number of pixels within city or country boundaries (urban area only).  

Prior to the calculations, the following preparatory steps were conducted. The WorldPop 

population count rasters32 were resampled from their original spatial resolution of 100m to 

match the 10m resolution of the binary segmentation maps. Resampling was applied such that 

the sum of the population count in the disaggregated (smaller) pixels of the resampled raster 

was equal to the population count of the corresponding original pixel congruent to the 

disaggregated pixels. For all country-level calculations, the Africapolis city polygons31 were 

dissolved at the country level, while retaining spatial segregation of individual cities. Similarly, 

the binary segmentation maps were merged at the country level, while disregarding all pixels 

outside Africapolis city boundaries.  

 

Software used for machine learning pipeline and analysis 

The entire machine learning pipeline was implemented in PyTorch48,49 and PyTorch 

Lightning50. For the calculations of all model evaluation metrics, we used the scikit-learn 

package51.   

After some preparatory steps in QGIS 3.24.141, the geospatial analysis was executed in R 

4.3.152. The sf package53 was used for handling shapefiles (city polygons), the terra package54 
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for handling raster files (segmentation maps and population counts), and the exactextractr 

package55 for the implementation of the final calculations. Concretely, the package was used to 

calculate zonal statistics of the binary segmentation maps and population counts within 

(individual or country-level dissolved) city boundaries. For ShA the unweighted mean of the 

binary segmentation maps was calculated, for ShP each pixel of the binary segmentation map 

was additionally weighted by its corresponding population count, and for TotP the total of the 

population count was calculated, but each pixel was weighted by the binary indicator from the 

segmentation map.  

All descriptive and statistical analyses, as well as all maps (except raster maps), were produced 

with Stata 1756. 

 

Limitations 

This work should be assessed in full acknowledgment of the data and methodological 

limitations. Data limitations pertain to the two primary sources of input data for our machine 

learning pipeline, ground truth data and Sentinel-2 satellite imagery data30, as well as to the 

WorldPop population count data32 used for weighting in the final geospatial analysis. One 

limiting factor is the amount of reliable ground truth data on informal settlements. With 16 

cities from six countries, the availability of ground truth data for the present study is rather 

moderate yet has the advantages of covering various regions (West, East, and Southern Africa) 

with different geographical and climatic conditions and significant differences in population 

size (from 30,000 in Lebohang, South Africa to 5.9M in Nairobi, Kenya; according to 

Africapolis estimates31). These features help ensure appropriate geographical and 

morphological diversity of the training data. In addition, evaluating the accuracy of our 

predictions is again limited by the amount of ground truth data, as evaluation statistics used in 

machine learning can only be calculated for cities with ground truth data. Hence, to complement 
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the common evaluation statistics reliant on ground truth data, we calculated an additional metric 

that exploits the fact that our final ensemble predictions are weighted averages of predictions 

based on four ‘country-specific’ models. Specifically, for each city, we calculated the per-pixel 

standard deviation (SD) of the four different predictions of informal settlement locations 

(according to the four different models – before aggregating as ensemble prediction). We then 

calculated city-level (Supplementary Fig. 5) and country-level (Supplementary Fig. 6) means 

of the SD across predictions. Both across cities and across countries, the mean and median of 

the aggregate SD were around 0.12 in 2016 and around 0.16 in 2022. These are rather low 

values compared to the theoretically possible maximum of 0.5, which implies only small 

variation across predictions from different models. Only 5 (28) cities have a mean SD higher 

than 0.25 in 2016 (2022) and all countries remain below this threshold in both years. Overall, a 

higher mean SD across the different models can be interpreted as lower confidence in our 

ensemble prediction for the corresponding city or country. 

Second, for a given city in a specific year, our machine learning pipeline uses all available 

satellite images with a cloud coverage of less than 15% (“cloud-free”). The more “cloud-free” 

images are available, the more accurate the predictions, as seasonal changes affecting the visual 

and spectral appearance of images will be averaged out. The mean (median) number of “cloud-

free” images across cities was 49 (36) in 2016 and 49 (34) in 2022. Only 36 (60) cities had less 

than 10 “cloud-free” images available in 2016 (2022) (Supplementary Fig. 1). This issue is most 

prevalent in Middle and West African cities in proximity to the coast – caution is warranted 

when interpreting the predictions for these cities. Nevertheless, even with a small number of 

images accurate predictions can be made – provided that the quality of the available images is 

sufficiently high.  Aggregation at the country-level further alleviates this caveat – only 2 (3) 

countries have less than 10 “cloud-free” images on average per city in 2016 (2022) 

(Supplementary Fig. 1).   
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Third, WorldPop population count estimates32 only extend until 2020, yet our analysis covers 

2022 as the most recent year. When using population counts as weights, i.e., when calculating 

the share of, and the total urban population living in informal settlements in 2022, we used the 

2020 population count data as an approximation. In absence of more recent population count 

data, we believe that this two-year difference is acceptable and should not substantially bias our 

estimates. For the calculation of population shares, only the relative distribution of the 

population within cities matters, which we assume should not change substantially over two 

years. Given the positive growth rates of the urban population in all sub-Saharan African 

countries2, our estimates of the total population living in informal settlements for 2022 (and the 

change between 2016 and 2022) will, for most cities, likely be slightly downward biased. In 

addition, the WorldPop population count data32 has been criticized for underestimating 

populations in informal settlements57–59. However, it is still better suited to capture populations 

in informal settlements compared to household surveys which often completely neglect 

informal settlements, in particular if growth in the urban periphery is unplanned and if sampling 

frames are not continuously updated. 

Methodological limitations are related to the binarization of the “raw” continuous probability 

maps. Given the geographical and morphological diversity across cities, we started with three 

different intuitive threshold values and for each country selected the threshold that minimizes 

the difference between our estimates of the share of the urban population living in informal 

settlements and those from UN-Habitat1. After this calibration, we reach a correlation 

coefficient of r=0.79 between our and the UN-Habitat estimates for 2020 (Extended Data Fig. 

8), with a mean (median) absolute difference of -4 pp (-3 pp). For six of 35 countries with UN-

Habitat data, the modulus difference remains larger than 15 pp after calibration (Extended Data 

Fig. 9). Although speculative, one reason could be geographic and climatic features. In five of 

these six countries our estimates are markedly smaller than the UN-Habitat estimates – and 

these countries are heavily dominated by desert and steppe. While it would be possible to 
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introduce additional binarization thresholds, this would increase the complexity of our 

procedure. More importantly, this would not be a guarantee for increased accuracy as the UN-

Habitat data itself is based on census and survey data with their own limitations and varying 

quality across countries13–15,17.  

 

Code availability 

All code used for the machine learning modeling and data processing pipeline – including 

downloading and pre-processing of Earth Observation data – is publicly available under 

https://gitlab.renkulab.io/deeplnafrica/deepLNAfrica/. The repository also includes the 

continuous probability maps for all 529 cities, as well as code to create binary maps based on 

threshold values. R code for the geospatial analysis and Stata code for descriptive and statistical 

analysis (including maps) is available upon request.  

 

Data availability 

All data used in this study is open-access and publicly available. For our various ground truth 

datasets, we provide a link to the respective original data source in the Supplementary Material, 

Section 1.1. We also advert to cases where we obtained the ground truth data directly from the 

institutional provider upon request.  
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 Extended Data 

Extended Data Figure 1 | Locations of the 16 cities with ground truth data. The location of cities with 

ground truth data are mapped by red circles. The circle area is proportional to the cities’ total population size (in 

2015, according to Africapolis estimates31). Countries with cities with ground truth data are filled green, 

countries without cities with ground truth data are left blank.  
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Extended Data Figure 2 | Classification of regions in sub-Saharan Africa. We classified countries as 

belonging to one four regions in sub-Saharan Africa: East, Middle, Southern, and West Africa. We therefore 

followed the United Nations (UN) Geoscheme for Africa60, with the only exception that we included Sudan in 

East Africa, which the UN classifies as part of North Africa. 
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Extended Data Figure 3 | Changes in the share of the urban population living in informal settlements 

between 2016 and 2022 across 529 cities. Changes are expressed in percentage points (pp). Cities are sorted on 

the x-axis in increasing order according to the changes between 2016 and 2022.   
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Extended Data Figure 4 | Share of the urban population living in informal settlements – 2016 versus 2022, 

529 cities. Cities are depicted by dark purple circles. Circles above the 45-degree-line experienced an increase in 

the share of the urban population living in informal settlements between 2016 and 2022. Circles below the 45-

degree-line experienced a decrease.   
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Extended Data Figure 5 | DHS sampling and informal settlement growth in Ouagadougou, Burkina Faso. 

IS stands for informal settlement. Yellow dots are DHS 201838 PSU centroids. Blue-shaded circles indicate 2km 

random displacement buffer of DHS PSUs. The true PSU centroid can thus be located anywhere within the cor-

responding blue-shaded circle.  
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Extended Data Figure 6 | Africapolis polygon of Johannesburg/Pretoria, South Africa. The red shaded 

polygon illustrates the area and boundaries of the urban agglomeration of Johannesburg and Pretoria, South 

Africa (including various suburbs), according to Africapolis31. Yellow polygons are considered separate cities 

because their built-up area is more than 200 meters away from the Johannesburg/Pretoria entity. For orientation, 

the background shows an OpenStreetMap layer of the area61.  
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Extended Data Figure 7 | Illustration of training and prediction pipeline. Top panel illustrates training 

pipeline. Bottom panel illustrates prediction pipeline.   
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Extended Data Figure 8 | Correlation between our predicted estimates and UN-Habitat estimates – 2020, 

country-level. Countries are depicted by dark purple circles. Both axes measure the share of the urban 

population living in informal settlements. Circles above the 45-degree-line indicate higher estimates by UN-

Habitat and circles below the 45-degree-line indicate higher estimates by our method. r is the correlation 

coefficient.  
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Extended Data Figure 9 | Difference between our predicted estimates and UN-Habitat estimates – 2020, 

country-level. Negative differences (red shades) mean that our estimates are lower than the UN-Habitat 

estimates1. Positive differences (green shades) mean that our estimates are higher than the UN-Habitat estimates. 

Nine countries have no UN-Habitat data. 


