

Evolution mapping: a tool to describe non-linear density fluctuations

Ariel G. Sánchez MPE/LMU

C. Correa, A. Eggemeier, M. Esposito, L. Finkbeiner, A. Fiorilli, A. Perez Fernandez, A. Pezzotta, A. Ruiz, A. Semenaite

New Strategies for Extracting Cosmology from Galaxy Surveys II - July 2024

New LSS analysis methods

State-of-the-art models only access large-scale information.

New surveys exacerbate this problem.

Model predictions based on **simulations**: **Emulators** trained on simulations. Simulation-based

inference.

Field-level inference.

Evolution mapping: linear P(k)

Alternative normalizations

- The scale $R = 12 \,\mathrm{Mpc}$ is arbitrary.
- Alternative normalizations include:
 - The value $\sigma(R)$ at any scale defined in Mpc.
 - The value of $\Delta^2(k_p)$ at any scale k_p defined in Mpc⁻¹.
 - The scale $R_{\rm nl}$ at which $\sigma(R_{\rm nl}) = 1$.
 - The scale $k_{\rm nl}$ at which $\Delta^2(k_{\rm nl}) = 1$.

Evolution mapping: We can map the z evolution of models

with identical Θ_s using the value of σ_{12} The Aletheia cosmologies

Model	Definition
Model 0	Reference Λ CDM as in Table 1.
Model 1	ACDM, $\omega_{\rm DE} = 0.1594 \ (h = 0.55).$
Model 2	ACDM, $\omega_{\rm DE} = 0.4811 \ (h = 0.79).$
Model 3	w CDM, $w_{\rm DE} = -0.85$.
Model 3	w CDM, $w_{\rm DE} = -1.15$.
Model 5	Dynamic dark energy, $w_a = -0.2$.
Model 6	Dynamic dark energy, $w_a = 0.2$.
Model 7	Non-flat ACDM, $\Omega_K = -0.05$.
Model 8	EDE model, $w_0 = -1.15$, $\Omega_{\text{DE},e} = 10^{-5}$

Aletheia: greek godess of truth. It means "to reveal".

$k/(\mathrm{Mr}$

We can map the z evolution of models with identical Θ_s using the value of σ_{12}

The Aletheia cosmologies

Model Definition Model 0 Reference Λ CDM as in Table 1. ΛCDM, $ω_{DE} = 0.1594$ (h = 0.55). ΛCDM, $ω_{DE} = 0.48/11$ (h = 0.79). Model 1 Model 2 Model 3 w CDM, $w_{\rm DE} = -0.85$. Model 3 wCDM, $w_{DE} = -1.15$. Model 5 Dynamic dark energy, $w_a = -0.2$. Model 6 Dynamic dark energy, $w_a = 0.2$. Model 7 Non-flat Λ CDM, $\Omega_K = -0.05$. **Model 8** EDE model, $w_0 = -1.15$, $\Omega_{\text{DE},e} = 10^{-5}$

Aletheia: greek godess of truth. It means "to reveal".

Evolution mapping: non-linear P(k)

 Evolution mapping gives a good description of the pron-linear P(k)

 $\sigma_{12} = 0.611$

- Differences can be seen in the deeply $\sigma_{12} = 0.343$ non-linear regime.
- Deviations are larger at high k and increase with σ_{12} .
- The models with the largest deviations change with 0.1 Mpc-112.

Evolution mapping: non-linear P(k)

• Evolution mapping gives a good description of the non-linear P(k)

 $P(k|z, \Theta_{\rm s}, \Theta_{\rm e}) \simeq P(k|\Theta_{\rm s}, \sigma_{12}(z, \Theta_{\rm s}, \Theta_{\rm e}))$

- Differences can be seen in the deeply non-linear regime.
- Deviations are larger at high *k* and increase with σ_{12} .
- The models with the largest deviations change with σ_{12} .

0.9

1.(

0.9

1.(

0.9

0.9

1.(

1.(

0.9

1.(

0.9

The peculiar velocity field

• At the linear level, v and δ are linked through the continuity equation.

$$\theta := -\frac{\boldsymbol{\nabla} \cdot \boldsymbol{v}}{af(a)H(a)}$$

• Considering $\ln \sigma_{12}$ as a time variable

$$\Upsilon = \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}\ln\sigma_{12}} = \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}}$$

• The rescaled velocities Υ follow the evolution mapping relation.

Modelling peculiar velocities is essential to analyse redshift-space quantities.

$$P_{\theta\theta}(k) = P_{\theta\delta}(k) = P_{\delta\delta}(k)$$

 $\frac{\mathbf{x}}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}\ln\sigma_{12}} = \frac{\mathbf{v}}{af(a)H(a)}$

 $\theta = - \nabla \cdot \Upsilon$

The peculiar velocity field

The peculiar velocity field

- Deviations from a perfect degeneracy follow a similar pattern as $P_{\delta\delta}(k)$.
- With the appearance of vorticity, the trend in the deviations is reverted.
- For each model, the maximum deviations $\int_{\mathbb{R}^{3}}^{1} \int_{0.99}^{1} \int_{0.98}^{1} e^{-k}$ are smaller than for $P_{\delta\delta}(k)$.
- The differences can also be described in terms of $\Delta g(\sigma_{12})$ and $\Delta g'(\sigma_{12})$

Beyond two-point statistics • Evolution mapping describes the full density field.

• It can be used to describe multiple statistics.

Beyond two-point statistics • Evolution mapping describes the full density field.

• It can be used to describe multiple statistics.

Emulating the non-linear P(k)

Standard approach:

Evolution mapping:

evolution

$\Theta = (\omega_{\rm c}, \omega_{\rm b}, n_{\rm s}, \omega_K, \omega_{\rm DE}, w_0, w_a, \dots, z)$

ALETHEIA

Evolution mapping reduces the required number of parameters to describe P(k|z).

Emulator results must be corrected by $\Delta g(\sigma_{12})$

COMET: Emulating perturbation theory

• Evaluation of $P_{\ell}(k|z)$ takes a few seconds -> MCMC analyses require a few days.

• For PT models, evolution mapping is exact.

• For a reference set $\Theta_{e,0}$, we sample $\mathbf{\Phi} = (\mathbf{\Theta}_{\mathrm{s}}, \sigma_{12}, f)$

• COMET is available as a Python package https://pypi.org/project/comet_emu/

• New versions adding ω_{ν} (Pezzotta+ in prep.) and config. space (Semenaite+ in prep.)

COMET - Cosmological Observables	
Modelled by Emulated perturbation The	0ľ

Parameter	Min. emulator range	Max. emulator range
ω_b	0.0205	0.02415
ω_c	0.085	0.155
n_s	0.92	1.01
σ_{12}	0.2	1.0
f	0.5	1.05

The computational cost of N-body simulations hinders the use of SBI.

CNNs can reproduce full N-body simulations based on their linear inputs (e.g., He et al. 2018, Jamieson et al. 2023).

Evolution mapping can help to generalise these results.

Preliminary results show good performance.

Currently studying the cosmological dependency of the results

ID.

prep.) Fernandez Pei

- Preliminary results show good performance.
- Currently studying the cosmological dependency of the results
- Main parameter controling the emulator's performance is $\sigma_{12}(z)$.
- Testing the impact of different structure formation histories.
- Apply to extensions of Λ CDM.

Fernandez

The information content of $P(k, \mu)$

Parameter degeneracies are modified for biased tracers in redshift-space

 $P_{\rm gg}(k,\mu) = (b_1\sigma)$

• The BAO signal provides constraints on

 $D_{
m M}(z)/r_{
m d}$

• The broad-band shape of $P_{gg}(k,\mu)$ contains weak information on the shape parameters (e.g., *n*_s).

$$(\tau_{12} + f\sigma_{12}\mu^2)^2 \frac{P_{\rm mm}(k)}{\sigma_{12}^2}$$

• For fixed Θ_s , models with the same values of $b_1 \sigma_{12}$ and $f \sigma_{12}$ are identical.

 $D_H(z)/r_{\rm d}$

LSS analysis methods

"Full-modelling" approach:

- Theoretical predictions directly compared against clustering data.

"Template" approach:

- Assume a fixed template cosmology.
- Differences between data and the template are compressed into:

- *Shapefit* includes two parameters, *m*, *n*, describing the shape of P(k)

- Select parameter space to be explored: e.g., ΛCDM , $\Theta = (\omega_{\rm b}, \omega_{\rm c}, \omega_{\rm DE}, n_{\rm s}, A_{\rm s})$

 $D_{\rm M}(z)/r_{\rm d}, \ D_H(z)/r_{\rm d}, \ f\sigma_{8/h}(z)$

Full-modelling LSS analyses

- Most LSS studies used full modelling (Sánchez+ 2017, Semenaite+ 2022, 2023)
- Focus on accuracy of the constraints: analyses used LSS + CMB data.
- Current focus: asses the consistency between different data sets.
- Several BOSS-only analyses (d'Amico+ 2020, Ivanov+ 2020, Tröster + 2020, ...)

- In the standard template analysis, *h* is kept fixed.
- The constraints on $f\sigma_{8/h}(z)$ depend on that assumption.
- The correct error on $f\sigma_{8/h}(z)$ should be marginalised over *h*.
- The effect disappears when expressed in terms of $f\sigma_{12}(z)$.

- In the standard template analysis, *h* is kept fixed.
- The constraints on $f\sigma_{8/h}(z)$ depend on that assumption.
- The correct error on $f\sigma_{8/h}(z)$ should be marginalised over *h*.
- The effect disappears when expressed in terms of $f\sigma_{12}(z)$.

• Constraints on *w*CDM:

 $\Theta = (\omega_{\rm b}, \omega_{\rm c}, \omega_{\rm DE}, n_{\rm s}, A_{\rm s}, w_{\rm DE})$

Planck + BOSS (high-z) - Full-modelling analysis: $w_{\rm DE} = -1.04 \pm 0.082$

 \mathcal{M}

• Constraints on *w*CDM:

-0.8 $(\omega_{\mathrm{b}}, \omega_{\mathrm{c}}, \omega_{\mathrm{DE}}, n_{\mathrm{s}}, A_{\mathrm{s}}, w_{\mathrm{DE}})^{-1}$ • P -0.9 $-1.0 \vdash$ \mathcal{M} $w_{\rm DE} = -1.04 \pm 0.082$ -1.1Planck $-1.2 \mathcal{W}$ + BOSS (direct) -1.30.25 0.30 0.400.45 0.35 $\omega_{
m DE}$

• Gil-Marin+ (2020) proposed to use $f\sigma_{8,q}$

 $\sigma_{8,q}^2 = \int_0^\infty dk \, k^2 P_{\rm L}(k) \, W^2(s_8 q k),$ where $s_8 = (8/h)$ Mpc and $q^3 = q_{\perp}^2 q_{\parallel}$

- This quantity cannot be used as the standard $f\sigma_{8/h}(z)$.
- Interpreting $f\sigma_{8,q}$ as $f\sigma_{8/h}$ leads to

 $w_{\rm DE} = -1.03 \pm 0.065$

Final remarks

- Evolution mapping: we classify parameters into *Shape* and *evolution* based on their impact on $P_{\rm L}(k|z)$.
- At the linear level, Θ_{e} follow a perfect degeneracy, described by σ_{12} . • This is partially inherited by the non-linear density field, with deviations sensitive to the suppression g(a) = D(a)/a.
- We are using evolution mapping to build new descriptions of the nonlinear matter density field.
- This approach can help us to better understand the information content of all clustering measurements.

