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Status of constraining local 
PNG with LSS
•Current best using Pk: -12±21 (eBOSS DR16 
QSO, Mueller et al. 2022) 

•Usual technique: scale-dependent bias on 
galaxy power spectrum

•Systematics

•Cosmic variance on large scales

•Forecast DESI  (Sailer et al. 2021)


•Adding Bispectrum -> tighter constraints 
•e.g. a factor of ~2-4 Pk -> Pk+Bk (SPHEREx, 
Dore et al. 2014, Heinrich, Dore & Krause 
2023)

•Large bispectrum from gravity 
•Large data vectors

σ( fNL) ∼ 10

Near-optimal 2-pt bispectrum estimator

Reconstruction

Dalal et al. 2008

Δb ∝ fNL
k2T(k)
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Transfer function

Primordial potential with local type  : 
 

fNL
Φ(x) = ϕG(x) + fNL{ϕ2

G(x) − ⟨ϕ2
G(x)⟩} + . . .

Gaussian potential Sensitivity goal: σ( fNL) < 1



New approach to constraining PNG 
•Reconstructing the density field

•Computing and fitting a near-optimal 2-pt bispectrum estimator

• Information content at the field level
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Reconstruction of the initial conditions: reverse a late-time 
density field back to initial density field 
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Late-time Initial

Matter density fields at high resolution (10243 particles in 1 Gpc/h box) at z=0, on a 5123 grid, using 
Quijote simulations (Villaescusa-Navarro et al. 2020) 



Density field reconstructed by the standard reconstruction 
algorithm still nonlinear 

Late-time Standard reconstruction

(Eisenstein et al. 2007) Initial

Matter density fields at high resolution (10243 particles in 1 Gpc/h box) at z=0, on a 5123 grid, using 
Quijote simulations (Villaescusa-Navarro et al. 2020) 
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Density field reconstructed by the standard reconstruction 
algorithm still nonlinear 

Late-time Standard reconstruction Initial

Matter density fields at high resolution (10243 particles in 1 Gpc/h box) at z=0, 
on a 5123 grid, using Quijote simulations (Villaescusa-Navarro et al. 2020) 

Smoothed at 5 Mpc/h
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A hybrid method that combines convolutional neural network (CNN) with a traditional algorithm 
based on perturbation theory (Chen et al. 2023, Shallue & Eisenstein 2023)

A new reconstruction method
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Matter density fields at high resolution (10243 particles in 1 Gpc/h box) at z=0, on a 5123 grid, using 
Quijote simulations (Villaescusa-Navarro et al. 2020) 



Large-scales use perturbation theory, small-scales use CNN

Late-time CNN trained w/ standard 
recon field

InitialStandard recon

•First step: traditional algorithm
•Second step: train CNN with reconstructed density fields
•CNN is relatively local, but perturbation theory provides good approximation on 
large scales. So traditional algorithm for large scales, CNN for smaller scales.
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CNN improves cross-correlation in matter field

r(k) = ⟨δ*(k)δini(k)⟩

⟨δ2(k)⟩⟨δ2
ini(k)⟩

•CNN+Algorithm performs significantly 
better

Reconstruction algorithm used: Hada & Eisenstein 2018 (HE18)

Real space matter field z=1, using Quijote simulations (Villaescusa-Navarro et al. 2020)

Pre-recon

Traditional Algorithm

CNN+Traditional Algorithm
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Hybrid recon boosts traditional algorithms in halo fields too

Pre-recon

Traditional Algorithm

CNN+Traditional Algorithm

z=1







n̄ = 2.0 × 10−4h3Mpc−3

b = 2.9
b2n̄ = 1.7 × 10−3h3Mpc−3

Similar to DESI Y1 LRG: 
b2n̄ ∼ 1.4 × 10−3h3Mpc−3

Reconstruction algorithm used: Hada & Eisenstein 2018 (HE18)
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fNL = + 100
fNL = 0
fNL = − 100

Model trained with no PNG works for PNG

r(k) = ⟨δ*(k)δini(k)⟩

⟨δ2(k)⟩⟨δ2
ini(k)⟩

CNN+Algorithm
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Reconstruction algorithm used: Hada & Eisenstein 2018

Real space matter field z=1, using Quijote-PNG simulations (Coulton et al. 2022)



New approach to constraining PNG 
•Reconstructing the density field

•Computing and fitting a near-optimal 2-pt bispectrum estimator 
• Information content at the field level
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Cross-power estimator

⟨Φ2δ⟩
Φ(k) = δ(k)

MΦ(k)
Primordial potential MΦ(k) = 2

3
k2T(k)
Ωm,0H2

0

Transfer functionReconstructed/Linear 

Φ2(k) = ∫ dxe−ik⋅xΦ2(x) = 1
(2π)3 ∫ dk1Φ(k1)Φ(k − k1)

⟨Φ2(k)δ(−k)⟩ = 1
(2π)3 ∫ dk1MΦ(k)⟨Φ(k)Φ(k − k1)Φ(−k)⟩

Primordial bispectrum

Integral of bispectrum. Need to set the 
integration limit same as bispectrum  to 
have same information as bispectrum

kmax

Near optimal by maximum likelihood estimation, 
first proposed by Schmittfull, Baldauf & Seljak 2015
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Primordial potential with local type  : 
 

fNL
Φ(x) = ϕG(x) + fNL{ϕ2

G(x) − ⟨ϕ2
G(x)⟩} + . . .

Gaussian potential



Cross-power estimator as a statistic

+100

0

-100

Cosine filter between 
k=0.2-0.25 h/Mpc

IC

CNN

IC

CNN

IC
CNN

fNL

15Real space matter field z=1

IC

CNN

IC

CNN

IC

CNN

IC

CNN
IC

CNN

IC
CNN

Pre-recon 

(w/  smoothing)20 h−1Mpc

Chen, Padmanabhan & Eisenstein 
(in prep.) 

+100 0
-100



Fisher error  for cross-power with matter density 
field of 1 Gpc/h volume

σ( fNL)

•Single parameter forecast: CNN+HE18 ~50, pre-recon ~76 
( , z=1) — ~1.5x improvement 

•Hybrid reconstruction allows higher 

•Optimistic without including other bias terms (squared, shift, tidal) -> can compute similar 
cross-power estimators

σ( fNL) σ( fNL)
kmax = 0.1 h/Mpc

kmax

16

3x
(Smoothed at 

)20 h−1Mpc
For eBOSS QSO survey 

volume (2.9 Gpc/h): 

4σ( fNL) ∼



New approach to constraining PNG 
•Reconstructing the density field

•Computing and fitting a near-optimal 2-pt bispectrum estimator

• Information content at the field level
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Templates for fitting fNL

δCNN = bGδG + fNLδfNL
+ b2δ2 + b∇2δ∇2 + bs2δs2 + . . .

Gaussian Shift Tidal Growth
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• =No PNG IC

• 

• , ,  all computed using 

δG
δfNL

= ϕ2
G(k)Mϕ(k)

δ2 δ∇2 δs2 δG



Small error but fits are slightly biased
•Errors in 1 Gpc volume, std of 90 sims

•With 3 Mpc/h smoothing for the quadratic fields

•k cut at 0.1 h/Mpc

bG fNL b2 bs2
fNL = 0

fNL = + 100
fNL = − 100

0.9998±0.0006 0.6±3.1 0.004±0.001 -0.018±0.001 0.017±0.001
1.0015±0.0006 93.0±3.2 0.004±0.001
 -0.018±0.001 0.018±0.001
0.9980±0.0006 -91.7±3.1 0.004±0.001 -0.018±0.001
 0.016±0.001

Chen, Padmanabhan & Eisenstein in prep.

b∇2
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z=1 real space
Fits for δCNN

Accounting for the shift in the mean at : 

: ~+92

: ~-92

fNL = 0
fNL = + 100
fNL = − 100 Slightly biased

For >2 Gpc survey volume (e.g. DESI): 

1σ( fNL) ∼ Much lower error



Small error but fits are slightly biased
•Reconstruction significantly reduces 
nonlinearities at the second order, and still 
preserves most PNG and gives tighter 
constrains

From F2 kernel:                               b2 = 17
21 ∼ 0.81 b∇2 = − 1 bs2 = 4

21 ∼ 0.19

Chen, Padmanabhan & Eisenstein in prep.

b∇2
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z=1 real space

bG b2 b∇2 bs2
fNL = 0

fNL = + 100
fNL = − 100

0.9994±0.0002 -5.8±4.5 0.820±0.003 -1.023±0.004 0.202±0.002
0.9994±0.0002 92.6±4.3 0.820±0.004 -1.023±0.005 0.202±0.002
0.9994±0.0002 -104.4±4.7 0.820±0.003 -1.023±0.003 0.201±0.002

fNL

Fits for δNL

Fits for δCNN ~1.5x improvement 

bG fNL b2 bs2
fNL = 0

fNL = + 100
fNL = − 100

0.9998±0.0006 0.6±3.1 0.004±0.001 -0.018±0.001 0.017±0.001
1.0015±0.0006 93.0±3.2 0.004±0.001
 -0.018±0.001 0.018±0.001
0.9980±0.0006 -91.7±3.1 0.004±0.001 -0.018±0.001
 0.016±0.001



Summary

• Reconstruction with CNN+Algorithm removes most gravitational nonlinearity and strengthens 
the primordial signal


• Cross-power estimator easy to compute and promising to estimate  

• Application of reconstruction on cross-power estimator gives low  although slightly 

biased mean


fNL
σ( fNL)
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Ongoing work and outlook 
• Including quadratic gravitational bias terms in the model (estimate each bias term 

—square, shift, tidal — with its own cross-power)

• High shot noise biased tracer

• Fitting templates in reality: fitting coefficients together with , forward model

• Applying to non-local types of PNG — extending cross-power estimator — can be 

more helpful since can’t rely on scale-dependent bias

δG


