Image: D. Schlege

Probing primore alloon-Gaussianity by reconstructing the initial conditions with machine learning

Xinyi Chen Yale University

07/04/24

Sesto

w/ Nikhil Padmanabhan, Daniel Eisenstein

Status of constraining local PNG with LSS

- •Current best using Pk: -12±21 (eBOSS DR16 QSO, Mueller et al. 2022)
- Usual technique: scale-dependent bias on galaxy power spectrum
 - Systematics
 - Cosmic variance on large scales
 - •Forecast DESI $\sigma(f_{\rm NL}) \sim 10$ (Sailer et al. 2021)
- Adding Bispectrum -> tighter constraints
 - e.g. a factor of ~2-4 Pk -> Pk+Bk (SPHEREx, Dore et al. 2014, Heinrich, Dore & Krause 2023)
 - Large bispectrum from gravity
 - Large data vectors

Near-optimal 2-pt bispectrum estimator

New approach to constraining PNG

- Reconstructing the density field
- •Computing and fitting a near-optimal 2-pt bispectrum estimator
- Information content at the field level

New approach to constraining PNG

Reconstructing the density field

 Computing and fitting a near-optimal 2-pt bispectrum estimator Information content at the field level

Reconstruction of the initial conditions: reverse a late-time density field back to initial density field

Late-time

Matter density fields at high resolution (1024³ particles in 1 Gpc/h box) at z=0, on a 512³ grid, using Quijote simulations (Villaescusa-Navarro et al. 2020)

Density field reconstructed by the standard reconstruction algorithm still nonlinear

Late-time

Matter density fields at high resolution (1024³ particles in 1 Gpc/h box) at z=0, on a 512³ grid, using Quijote simulations (Villaescusa-Navarro et al. 2020)

195*Mpc/h*

(Eisenstein et al. 2007)

Density field reconstructed by the standard reconstruction algorithm still nonlinear

Late-time

Standard reconstruction

Matter density fields at high resolution (1024³ particles in 1 Gpc/h box) at z=0, on a 512³ grid, using Quijote simulations (Villaescusa-Navarro et al. 2020)

Smoothed at 5 Mpc/h

A new reconstruction method

A hybrid method that combines convolutional neural network (CNN) with a traditional algorithm based on perturbation theory (**Chen** et al. 2023, Shallue & Eisenstein 2023)

Matter density fields at high resolution (1024³ particles in 1 Gpc/h box) at z=0, on a 512³ grid, using Quijote simulations (Villaescusa-Navarro et al. 2020)

Large-scales use perturbation theory, small-scales use CNN

- First step: traditional algorithm
- Second step: train CNN with reconstructed density fields
- CNN is relatively local, but perturbation theory provides good approximation on large scales. So traditional algorithm for large scales, CNN for smaller scales.

Late-time

Standard recon

CNN trained w/ standard recon field

CNN improves cross-correlation in matter field

Real space matter field z=1, using Quijote simulations (Villaescusa-Navarro et al. 2020)

Reconstruction algorithm used: Hada & Eisenstein 2018 (HE18)

- 10

Hybrid recon boosts traditional algorithms in halo fields too

Reconstruction algorithm used: Hada & Eisenstein 2018 (HE18)

Model trained with no PNG works for PNG

Real space matter field z=1, using Quijote-PNG simulations (Coulton et al. 2022)

Reconstruction algorithm used: Hada & Eisenstein 2018

$$r(k) = \frac{\langle \delta^*(k) \delta_{\text{ini}}(k) \rangle}{\sqrt{\langle \delta^2(k) \rangle \langle \delta_{\text{ini}}^2(k) \rangle}}$$

CNN+Algorithm

$$- f_{\rm NL} = + 100$$

... $f_{\rm NL} = 0$
 $f_{\rm NL} = 100$

$$- f_{\rm NL} = -100$$

1.0

New approach to constraining PNG

- Reconstructing the density field
- Computing and fitting a near-optimal 2-pt bispectrum estimator
- Information content at the field level

Cross-power estimator

$$\begin{array}{l} & \left\langle \Phi^2 \delta \right\rangle \\ & \left\langle \Phi^2 \delta \right\rangle \\ & Reconstructed/Linear \\ & Primordial potential \quad \Phi(k) = \frac{\delta(k)}{M_{\Phi}(k)} \end{array} \right| \\ & \left\langle \Phi^2(k) = \int dx e^{-ik \cdot x} \Phi^2(x) = \frac{1}{(2\pi)^3} \int dk_1 \Phi(k_1) \Phi(k-k_1) \\ & \Phi^2(k) \delta(-k) \right\rangle = \frac{1}{(2\pi)^3} \int dk_1 M_{\Phi}(k) \underbrace{\left\langle \Phi(k) \Phi(k-k_1) \Phi(-k) \right\rangle}_{Primordial bispectrum} \end{array}$$
Primordial bispectrum Integration limit same as bispectrum k_{max} to have same information as bispectrum

Near optimal by maximum likelihood estimation, first proposed by Schmittfull, Baldauf & Seljak 2015

Real space matter field z=1

Fisher error $\sigma(f_{NI})$ for cross-power with matter density field of 1 Gpc/h volume

k_{\max}	$\operatorname{Smoothing}$	IC
	$10 \ h^{-1} \ \mathrm{Mpc}$	52.
$0.1 \; h/{ m Mpc}$	$5 \ h^{-1} \ \mathrm{Mpc}$	48.
	Cosine	46.
$0.2 \; h/{ m Mpc}$	Cosine	15.

- •Single parameter forecast: CNN+HE18 $\sigma(f_{\rm NI})$ ~50, pre-recon $\sigma(f_{\rm NI})$ ~76 $(k_{\text{max}} = 0.1 \ h/\text{Mpc}, z=1) - \sim 1.5x$ improvement
- •Hybrid reconstruction allows higher k_{max}
- cross-power estimators

•Optimistic without including other bias terms (squared, shift, tidal) -> can compute similar

New approach to constraining PNG

Reconstructing the density field

- •Computing and fitting a near-optimal 2-pt bispectrum estimator
- Information content at the field level

Templates for fitting $f_{\rm NI}$

- • δ_G =No PNG IC
- $\bullet \delta_{f_{\rm NL}} = \phi_G^2(k) M_{\phi}(k)$
- • $\delta^2, \delta_{\nabla^2}, \delta_{S^2}$ all computed using δ_G

Small error but fits are slightly biased

Chen, Padmanabhan & Eisenstein in prep.

Accounting for the shift in the mean at $f_{\rm NL} = 0$:

 $f_{\rm NL} = +\ 100:$ ~+92 $f_{\rm NL} = -\ 100:$ ~-92

For >2 Gpc survey volume (e.g. DESI): $\sigma(f_{\rm NI}) \sim 1$

- Errors in 1 Gpc volume, std of 90 sims
- •With 3 Mpc/h smoothing for the quadratic fields
- •k cut at 0.1 h/Mpc

4			
	b_2	$ b_{ abla^2}$	b_{s^2}
	0.004±0.001	-0.018±0.001	0.017±0.001
	0.004±0.001	-0.018±0.001	0.018±0.001
	0.004±0.001	-0.018±0.001	0.016±0.001

- **Slightly biased**

Much lower error

Small error but fits are slightly biased

Chen, Padmanabhan & Eisenstein in prep.

Fits for $\delta_{
m NL}$

From F₂ kernel:

 Reconstruction significantly reduces nonlinearities at the second order, and still preserves most PNG and gives tighter constrains

1	1	1
b_2	b_{∇^2}	b_{s^2}
0.004±0.001	-0.018±0.001	0.017±0.001
0.004±0.001	-0.018±0.001	0.018±0.001
0.004±0.001	-0.018±0.001	0.016±0.001

	b_2	$b_{ abla^2}$	b_{s^2}	
مالية ما مالية مالية مالي	0.820±0.003	-1.023±0.004	0.202±0.002	
	0.820±0.004	-1.023±0.005	0.202±0.002	
7	0.820±0.003	-1.023 ± 0.003	0.201±0.002	
$b_2 = \frac{17}{21} \sim 0.81 b_{\nabla^2} = -1 b_{s^2} = \frac{4}{21} \sim 0.1$				

Summary

- Reconstruction with CNN+Algorithm removes most gravitational nonlinearity and strengthens the primordial signal
- Cross-power estimator easy to compute and promising to estimate $f_{\rm NL}$ • Application of reconstruction on cross-power estimator gives low $\sigma(f_{\rm NI})$ although slightly
- biased mean

Ongoing work and outlook

- -square, shift, tidal with its own cross-power)
- High shot noise biased tracer
- Fitting templates in reality: fitting coefficients together with δ_G , forward model
- more helpful since can't rely on scale-dependent bias

Including quadratic gravitational bias terms in the model (estimate each bias term)

• Applying to non-local types of PNG — extending cross-power estimator — can be