

Field level bias modeling, time evolution, and local primordial non-Gaussianity

July 4 2024

Jamie Sullivan (based on work w/ Stephen Chen, Uroš Seljak)

Jamie Sullivan

(based on work w/ Stephen Chen, Uroš Seljak)

Simplest Local Primordial Non-Gaussianity

Initial gravitational potential largely Gaussian

But primordial physics can add non-Gaussianity (PNG) (Also Thomas', Xinyi's, Robin's, Karthik's talks)

E.g. multi-field inflation produces *local* PNG:

$$\phi = \phi_G + f_{NL}^{\text{loc}} [\phi_G^2 - \langle \phi_G^2 \rangle]$$
Seed for structure Counts multiple fields

f_{NL} a Prime Target of Future Galaxy Surveys

Spec-S5:

- DESI, Euclid, SPHEREx, PFS...
- Also SO x Rubin-LSST, CMB-S4

Measuring LPNG in Galaxy Surveys

Measure power spectrum

Measuring LPNG in Galaxy Surveys

Measuring LPNG in Galaxy Surveys

Planck15, Dalal+08, Slosar+08, image from A. Barreira

Constraining f_{NL}

Constraining f_{NL}

Assuming a b, - Universal Mass Function

Cartoon: LPNG "boosts local variance"

Halos form after crossing threshold

Crossing affected by LPNG

Assume UMF form:

$$b_{\phi}(b,p) \propto b-p$$

Slosar+08, Desjacques+16

Galaxy survey $\mathbf{f}_{\rm NL}$ - SDSS quasars

Slosar++08

Galaxy survey f_{NL} - SDSS quasars

Slosar++08

Ross++12

Galaxy survey f_{NL} - SDSS quasars

Ross++12

Leistedt++14

Galaxy survey f_{NL} - eBOSS quasars

Galaxy survey f_{NL} - eBOSS quasars

Slosar++08

Ross++12

Leistedt++14

Castorina++19

Mueller++21

Galaxy survey f_{NL} - BOSS LRGs

Slosar++08

Ross++12

Leistedt++14

Castorina++19

Mueller++21

D'Amico++22

Galaxy survey f_{NL} - BOSS LRGs

BOSS DR12 (B) optimal BOSS DR12 (A) Slosar++08weights Simulation N/o optimal weights Ross++12Leistedt++14 BOSS $P_{l} + Q_{0} + BAO$ BOSS $P_{\ell} + Q_0 + BAO + B_0$ 300 Castorina++19 50 fortho $f_{\rm NL}^{\rm loc}$, p = 1.0-300 Mueller++21 -600D'Amico++222000 -5000 0 f_{NI}^{equil} f_{NL} Cabass++22a-50-300 -200 -100100 200 300 0 f^{local} 2.45 2.50 2.55 2.60 2.03 2./0 -500000 0 500000 1000000 $g_{
m NL}$

 $b_{\rm qso}$ (NGC)

Galaxy survey f_{NL} - eBOSS/DESI

Embracing b_{ϕ} ?

Two issues today:

- 1. Do we really need b_{ϕ} in principle? -> Test b_{ϕ} at field level
- 2. If yes, how to decide b_{ϕ} ?
 - -> Estimate from time-evolution

(Won't really talk about assembly bias, but see Sullivan+23, Barreira+Krause23, Fondi+23, Barreira...)

Field-level Bias Model

Idea: test of PNG bias at the field level (quadratic Lag model)

Field-level likelihood - simple regression - NL displacements Schematically:

Field-level Bias Model

At 2nd order in bias, 2 Local PNG terms

Neglect position-dependent variance

$$\mathcal{P}[\delta_t|\delta] = \prod_{\mathbf{x}} \left(2\pi\sigma_0^2\right)^{-\frac{1}{2}} \exp\left(-\frac{|\delta_t(\mathbf{x}) - \delta_{t,\text{fwd}}(\mathbf{x},\delta)|^2}{2\sigma_0^2}\right)$$

$$\begin{split} \tilde{\delta}_{t,\text{fwd}}(\mathbf{x},\delta) &= -\delta(\mathbf{x}) + b_{\delta} D(z) \ \delta^{\text{adv}}(\mathbf{q}) \\ &+ b_{\delta^2} \ D^2(z) \ \delta^{2,\text{adv}}(\mathbf{q}) + b_{K^2} \ D^2(z) \ K_{ij}^{2,\text{adv}}(\mathbf{q}) \\ &+ c_{\nabla^2\delta} \ D(z) \ \left(\nabla^2\delta\right)^{\text{adv}}(\mathbf{q}) \\ &+ \epsilon_t(\mathbf{x}), \end{split} \qquad \begin{aligned} \delta_{t,\text{fwd}}(\mathbf{x}) &= \tilde{\delta}_{t,\text{fwd}}(\mathbf{x},\delta) + b_{\phi}f_{NL}^{\text{loc}}\phi^{\text{adv}}(\mathbf{q}) \\ &+ b_{\phi\delta}f_{NL}^{\text{loc}} \left[\phi\delta\right]^{\text{adv}} \end{split}$$

 (\mathbf{q})

Separate Universe (response) b_{ϕ}

Separate Universe (->peak-background split)

Finite-difference 2 sims

Uses infinite-wavelength limit

UMF Prediction

Roughly agree with UMF and SU on large scales

Quadratic Bias Parameters

How are we doing with the cutoff Λ ?

Looks good for Gaussian up to red scale

Quadratic I

How are we doing with the cutoff Λ ?

Looks good for Gaussian up to red scale

Adding PNG, much the same*

(*w/ renormalized operators)

Check with PDFs

Does this breakdown make sense? -> yes, small-scale failure

Inferring Local PNG

Easy mode - <u>fixed ICs</u>

Inferring f_{NL} , marginalizing over from PT mocks? Yes

```
Inferring f_{NL} from halos?
```

Inferring Local PNG

PT mock test

Bias-marginalized profile likelihood

2-3x degradation on $\sigma(f_{NL})$ w/ quadratic bias

Also a bias

Linear

Quadratic

Even easy-mode pessimistic...

Inferring Local PNG

Even easy-mode pessimistic...

Final Thoughts

LPNG fits into the field-level bias model framework

Halo tests at z=1 indicate:

- Several sanity checks passed
- Challenges at 2nd order beyond 0.1 h/Mpc
- Need for density-dependent stoch.?

Linear model *not* suitable to infer f_{NI} on quasi-linear scales

-> Priors on b_{ϕ} are *critical* for constraints

Bias from Time Evolution - Idea

LPNG is "like" boosting underlying variance

Bias from Time Evolution - Idea

- LPNG is "like" boosting underlying variance
- Can measure LPNG bias by running 2 simulations w/ diff variance
- But boosting variance is ~equivalent to boosting growth of structure!

Universality of mass function a decent first approximation

Peak-background split relates bias to peak height response

$$\sigma^{2}(M,z) = \frac{1}{2\pi^{2}} \int k^{2} dk |W(R(M,z)k)|^{2} D^{2}(z) P_{L}(k)$$
$$n(M) = n(M,\nu) = M^{-2} \nu f(\nu) \frac{\mathrm{d}\ln\nu}{\mathrm{d}\ln M} \quad \nu = \delta_{\mathrm{c}}^{2} / \sigma^{2}(M)$$

Growth and change in variance perfectly degenerate via variance

Universality of mass function a decent first approximation

Peak-background split relates bias to peak height response

$$\sigma^{2}(M,z) = \frac{1}{2\pi^{2}} \int k^{2} dk |W(R(M,z)k)|^{2} D^{2}(z) P_{L}(k)$$
$$n(M) = n(M,\nu) = M^{-2} \nu f(\nu) \frac{\mathrm{d}\ln\nu}{\mathrm{d}\ln M} \quad \nu = \delta_{\mathrm{c}}^{2} / \sigma^{2}(M)$$

Growth and change in variance perfectly degenerate via variance

Universality of mass function a decent first approximation

Peak-background split relates bias to peak height response

$$\sigma^{2}(M,z) = \frac{1}{2\pi^{2}} \int k^{2} dk |W(R(M,z)k)|^{2} D^{2}(z) P_{L}(k)$$
$$n(M) = n(M,\nu) = M^{-2} \nu f(\nu) \frac{\mathrm{d}\ln\nu}{\mathrm{d}\ln M} \qquad \nu = \delta_{\mathrm{c}}^{2} / \sigma^{2}(M)$$

Growth and change in variance perfectly degenerate via variance

Bias from Time Evolution - Simulated Halos

N-body halos at z = 1Evaluate bias via finite difference response to: 1. variance (σ_8)

2. growth

$$b_{\phi}^{X = \{\sigma_8, D(z)\}} = 2 \frac{d \log n_g}{d \delta X}$$

Bias from Time Evolution - Non-Universality

What about general tracers?

From SU, we argue adding LPNG shifts time

Any strongly time-dep. tracer property impacts b_{ϕ} Halo conc., galaxy color, etc.

Seems to be true...

Time

Pajer+13, Dai+15, Baldauf+11, Marinucci+23 (image)

Bias from Time Evolution - Hydro

Can do the same w/ LPNG assembly bias - here w/ color

Holds roughly across mass

CAMELS hydro

Stay tuned for BOSS LRGs (selection function)

^Lessons from the past

Bias from Time Evolution - Evolution Bias

Number density evolution in GR power

Past measurement in data

But color-dependent selection

$$\delta_n = b \delta_m^{\text{syn}} + \left[\frac{\mathrm{d} \ln(a^3 \bar{n}_s)}{\mathrm{d}\eta} + 3\mathcal{H} \right] \frac{v}{k}$$
$$b_e \equiv \frac{\mathrm{d} \ln(a^3 \bar{n}_g)}{\mathrm{d} \ln a}$$

Challinor+Lewis11, Jeong++11, Baldauf+11, Yoo++10, DJS16, Wang++20

Bias from Time Evolution - Simulated Selection

Challinor+Lewis11, Jeong++11, Baldauf+11, Yoo++10, DJS16,

Bias from Time Evolution - Final Thoughts

Priors on b_{ϕ} are *critical* for constraints

Time evolution a potential path forward

Color-dependent, magnitude-limited selections

Joint inference with power spectrum dipole/octopole?

Extra

Force resolution - FastPM

Force resolution - Quijote

Priors

σ_8 Halos

Schmidt20