Analytical model for density-split galaxy clustering New Strategies for Extracting Cosmology from Galaxy Surveys (2nd edition) Mathilde Pinon - *PhD student at CEA Saclay with Arnaud de Mattia, Étienne Burtin, Vanina Ruhlmann-Kleider*

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science **IRFU – CEA Saclay** Institut de recherche sur les lois fondamentales de l'univers

The matter density field has evolved to become non-Gaussian

- The matter density field is **non-Gaussian** at **late time** and **small scales**
- 2-point statistics (correlation function, power spectrum) are not sufficient to describe it entirely
- We need alternative statistics to capture non-Gaussian information from the density field

Density-split statistics

Density splits help tighten constraints on cosmological parameters

Paillas et al. 2023 http://arxiv.org/abs/2309.16541

- BOSS DR12 CMASS sample ($0.45 \le z \le 0.6$)
- R = 10 Mpc/h
- 5 density splits, auto and cross-correlation functions
- emulator trained on AbacusSummit N-body simulations

Garrison et al. 2021, Maximova et al. 2021

Density splits help tighten constraints on cosmological parameters

Paillas et al. 2023 http://arxiv.org/abs/2309.16541

- BOSS DR12 CMASS sample ($0.45 \le z \le 0.6$)
- emulator model fitted in 1 Mpc/h < s < 150 Mpc /h
- CMB acoustic scale fixed
- **1.9 to 2.9**× **improved precision** on σ_8 , ω_{cdm} , n_s with respect to 2PCF only
- 4.3% constraint on $f\sigma_8$: ~**2**× **better** than BOSS main analysis

What are the building blocks of density-split clustering statistics?

$$\xi_{R_1,R_2}^{ ext{DS}}(s) = rac{\langle n_{R_1}^{ ext{DS}}(r)n_{R_2}(r+s)
angle}{ar{n}_{R_1}^{ ext{DS}}ar{n}} - 1$$
 (smoothed) density-split correlation function at separation s $\langle n_{R_1}^{ ext{DS}}(r)n_{R_2}(r+s)
angle = ar{n}^2 \int_{ ext{DS}} d\delta_{R_1}(r) \int_{-\infty}^{+\infty} d\delta_{R_2}(r+s)(1+\delta_{R_2}(r+s)) \mathcal{P}(\delta_{R_1}(r),\delta_{R_2}(r+s))$

we need to know the joint PDF of $\delta_{R_1}(r)$, $\delta_{R_2}(r+s)$

here:

- δ_R is the density constrast smoothed by some kernel with smoothing scale R
- DS is a given region of density (« density split »)

A simple case: Gaussian density field

If we assume that $\delta_{R_1}(r)$, $\delta_{R_2}(r+s)$ follows a **bivariate Gaussian distribution**, we find:

 $\xi_{R_1R_2}^{DS}(s)$ has the same shape as $\xi_{R_1R_2}(s)$ but rescaled by \propto the average density in DS

information from the density on small scales is spread out to larger scales

 $s \left[\mathrm{Mpc}/h \right]$

100

50

2PCF

 $DS1 \times all$

 $DS2 \times all$

 $DS3 \times all$

150

100

50

0

-50

-100

 $s^2 \xi^{DS}_R(s) \; [(\mathrm{Mpc}/h)^2]$

(similar result to Kaiser 1984 <u>10.1086/184341</u>)

Analytical Gaussian model vs Gaussian simulations

- Gaussian density-split model successfully describes density from Gaussian simulations provided that shot noise is low (so that the density is really Gaussian)
- but real matter density field is not Gaussian anyway

R = 10 Mpc/h

In practice the matter density field is not Gaussian, but is close to lognormal

• Dark matter (DM) density field computed from AbacusSummit simulation (Garrison et al. 2021 <u>10.1093/mnras/stab2482</u>, Maximova et al. 2021 <u>10.1093/mnras/stab2484</u>)

simulation characteristics

- N-body simulation
- 2 Gpc/*h* cubic box
- $\bar{n} = 0.003 \ (h/Mpc)^3$
- z = 0.8

A more realistic case: lognormal density field

• assumption:
$$Y_{R_1}, Y_{R_2} = ln\left(1 + \frac{\delta_{R_1}}{\delta_{0,R_1}}\right), ln\left(1 + \frac{\delta_{R_2}}{\delta_{0,R_2}}\right)$$
 follows a **bivariate Gaussian distribution**

Gaussian model

$$\xi_{R_1R_2}^{DS}(s) = \frac{\int_{\delta_1}^{\delta_2} d\delta_{R_1} \delta_{R_1} \mathcal{P}(\delta_{R_1})}{\int_{\delta_1}^{\delta_2} d\delta_{R_1} \mathcal{P}(\delta_{R_1})} \frac{\xi_{R_1r_2}(s)}{\sigma_{R_1R_2}^2} \longrightarrow \begin{cases} \xi_{R_1R_2}^{DS}(s) = \delta_{0,R_2} \frac{\left[\int_{\delta}^{\delta_2} (1+\frac{\delta}{\delta_{0,R_1}}) \frac{\xi_{R_1R_2}(s)}{\delta_{0,R_1}} d\delta_{R_1} \mathcal{P}(\delta_{R_1})\right]_{\delta_1}}{\int_{\delta_1}^{\delta_2} d\delta_{R_1} \mathcal{P}(\delta_{R_1})} \end{cases}$$

Lognormal model vs. Abacus dark matter simulations

- assumption: $Y_{R_1}, Y_{R_2} = ln\left(1 + \frac{\delta_{R_1}}{\delta_{0,R_1}}\right), ln\left(1 + \frac{\delta_{R_2}}{\delta_{0,R_2}}\right)$ follows a **bivariate Gaussian distribution**
- good qualitative agreement but not at the level of the mocks' precision for DS1/at small scales

What about redshift space?

- in practice, we observe galaxies with redshift space distortions (RSD)
- good qualitative agreement but not at the level of the mocks' precision for the quadrupole/small scales

Lognormal assumption is not accurate enough

- high density regions (DS2) are the better modelled by the lognormal assumption in real space
- but lognormal model fails for low density regions (DS0, DS1)

Model computed directly from the measured joint PDF

• If we know the true joint PDF of $\delta_{R_1}(r)$, $\delta_{R_2}(r+s)$, we can model density-split correlation very well

residuals between model and mocks over mocks' standard deviation

Gram-Charlier expansion to improve the model?

- let's look at the lognormal transform of δ_{R_1} , δ_{R_2} which is nearly Gaussian
- Gram-Charlier expansion breaks down at scales < 40 Mpc/h

Gram-Charlier expansion to improve the model?

• Gram-Charlier expansion (dots) does not do better than the lognormal model

residuals between model and mocks over mocks' standard deviation

Conclusions

- Density-split clustering statistics is a promising alternative statistics to extract information from galaxy surveys such as DESI
- Previous work obtained cosmological constraints from BOSS using a simulation-based model
- An **analytical model** might help us understand what is the **additional physical information** encoded in density-splits statistics compared to standard statistics
- We can predict the density-split correlation from the 2D PDF of $\delta_{R_1}(r)$, $\delta_{R_2}(r+s)$
- Assuming a **lognormal density field** seems reasonable for dark matter in real and redshift space, although not at the level of DESI-like precision
- We can try to expand the density PDF around the lognormal model, e.g. with **Gram-Charlier expansion** (seems not accurate enough) or **normalizing flows**? (work in progress)
- We can try to use results from Large Deviation Theory (e.g. Uhlemann et al. 2016 <u>arXiv:1607.01026</u>, Codis et al. 2016 <u>arXiv:1602.03562</u>)

Smoothing kernel

Unsmoothed density splits

We can't measure the "unsmoothed" density contrast, but as we go to smaller smoothing scales, the density becomes further away to lognormal

Lognormal model compared to dark matter halos (real space)

breaks down below ~40 h/Mpc (unsmoothed)