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The matter density field has evolved to become non-Gaussian

* The matter density field is non-Gaussian at late time and small scales
e 2-point statistics (correlation function, power spectrum) are not sufficient to describe it entirely

* We need alternative statistics to capture non-Gaussian information from the density field
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Density-split statistics
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density is split into N quantiles random points in each region are cross-correlated with tracers
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Density splits help tighten constraints on cosmological parameters

Paillas et al. 2023
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Density splits help tighten constraints on cosmological parameters

Paillas et al. 2023
http://arxiv.org/abs/2309.16541

* BOSS DR12 CMASS sample (0.45 <z <0.6) g 58
 emulator model fitted in 1 Mpc/h <s <150 Mpc /h 01151 X

e CMB acoustic scale fixed

* 1.9 to 2.9x improved precision on gg, W 4m, N

with respect to 2PCF only

* 4.3% constraint on fog:
~2 X better than BOSS main analysis
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What are the building blocks of density-split clustering statistics?

DS
—1 (smoothed) density-split correlation function at separation s
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we need to know the joint PDF of
Or, (1), 6g,(r +s)

here:

* Op is the density constrast smoothed by some kernel with smoothing scale R
» DSisagiven region of density (« density split »)
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A simple case: Gaussian density field

If we assume that 6, (1), 6, (r + s) follows a bivariate Gaussian distribution, we find:
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leR (s) has the same shape as ¢z ., (s)

but rescaled by « the average density in DS —_— information from the density on small scales is spread out
to larger scales

(similar result to Kaiser 1984 10.1086/184341)
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Analytical Gaussian model vs Gaussian simulations

* Gaussian density-split model successfully describes density from Gaussian simulations provided that shot noise
is low (so that the density is really Gaussian)

* butreal matter density field is not Gaussian anyway R = 10 Mpc/h
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In practice the matter density field is not Gaussian, but is close to lognormal

* Dark matter (DM) density field computed from AbacusSummit simulation
(Garrison et al. 2021 10.1093 /mnras/stab2482, Maximova et al. 2021 10.1093 /mnras/stab2484)
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A more realistic case: lognormal density field

8 5
* assumption: Yp ,Yp, = In (1 t3 M ), In (1 + 2 ) follows a bivariate Gaussian distribution
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Lognormal model vs. Abacus dark matter simulations

8 5
* assumption: Yp ,Yp, = In (1 + ), In (1 + 2 ) follows a bivariate Gaussian distribution

60,R1 O,R)

« good qualitative agreement but not at the level of the mocks’ precision for

Pinon et al,, in prep.
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/at small scales

25 AbacusSummit boxes
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What about redshift space?

* in practice, we observe galaxies with redshift space distortions (RSD)

* good qualitative agreement but not at the level of the mocks’ precision for the quadrupole/small scales
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Lognormal assumption is not accurate enough

 high density regions (DS2) are the better modelled by the lognormal assumption in real space

* but lognormal model fails for low density regions (DSO,
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Model computed directly from the measured joint PDF

« If we know the true joint PDF of 6 (), 6g,(r + s), we can model density-split correlation very well
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Gram-Charlier expansion to improve the model?

* let’slook at the lognormal transform of 6z, 6g, which is nearly Gaussian

* Gram-Charlier expansion breaks down at scales < 40 Mpc/h

blue: AbacusSummit simulations
red: 2D Gaussian
magenta: Gram-Charlier up to order 7
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Gram-Charlier expansion to improve the model?

* Gram-Charlier expansion (dots) does not do better than the lognormal model
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Conclusions

* Density-split clustering statistics is a promising alternative statistics to extract information from galaxy
surveys such as DESI

* Previous work obtained cosmological constraints from BOSS using a simulation-based model

* An analytical model might help us understand what is the additional physical information encoded in
density-splits statistics compared to standard statistics

* We can predict the density-split correlation from the 2D PDF of 6 (), 6, (r + 5)

* Assuming a lognormal density field seems reasonable for dark matter in real and redshift space, although
not at the level of DESI-like precision

* We can try to expand the density PDF around the lognormal model, e.g. with Gram-Charlier expansion
(seems not accurate enough) or normalizing flows? (work in progress)

* We can try to use results from Large Deviation Theory (e.g. Uhlemann et al. 2016 arXiv:1607.01026, Codis et
al. 2016 arXiv:1602.03562)
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Smoothing kernel

K
I
° oo J/T/./ 2 m
: S %
() e .o ’ WR L @ . . % gﬂ WR L:“
o .° 0. _— : -. . ﬁo( Eg E— E,
‘. o @ |e 2 5 z
.. ... ® ) 2 r ,//’ g e’ E
Catalog of particles Density mesh Density is computed
(halos, galaxies...) Cell size =R for each particle
r T T
Wo(r) — W TSC (_m)WTSC (_y)WTSC (_z)
r() R R R Global smoothing kernel:
: 1
3|52 if|s| < 1 — used twice — Kpg(r,z) = v Z Wr(r —rijx)Wgr(x — 75 jk)
=
TSC . 1 3 9 2 ol 3 27,
W) = q3(3 - 1sP) if3 <ls| <
0 otherwise.
July 2024 Mathilde Pinon - PhD student at CEA Saclay 18



Unsmoothed density splits
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“unsmoothed” lognormal model fails on scales below ~40 Mpc/h
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Lognormal model compared to dark matter halos (real space)
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