Precise Cosmological Constraints from BOSS (& DESI) Galaxy Clustering using the Wavelet Scattering Transform

AI in Science

Georgios Valogiannis University of Chicago entia latur

New Strategies for Extracting Cosmology from Galaxy Surveys - 2nd edition Tuesday, July 7, 2024



Based partly on arXiv: 2310.16116, 2204.13717 & 2108.07821 in collaboration with **Cora Dvorkin & Sandy Yuan** 

Background from Millennium Simulation, 2005

#### Challenges in the era of precision cosmology

- Large-Scale Structure (LSS) of the universe a powerful probe of fundamental physics
  - Dark energy
  - Dark matter
  - Massive neutrinos
  - Gravity
- Will soon be mapped precisely by:
  - Dark Energy Spectroscopic Instrument (DESI)
  - V. Rubin Observatory LSST
  - Euclid
  - Nancy Grace Roman Space Telescope
  - SPHEREx
  - + Synergies with CMB
- How do we optimally extract information from the LSS??









F. Villaescusa-Navaro et al. (2019)



2-point correlation function/Power Spectrum



F. Villaescusa-Navaro et al. (2019)



Physical Information





2-point correlation function/Power Spectrum (incomplete)





Power Spectrum information saturates in nonlinear regime. Inadequate! (Carron 2011,2012)

M. Neyrinck et al. (2009)





Power spectrum + Higher order statistics (expensive, incomplete?)









Marked power spectrum, log. transform, skew spectrum Nearest neighbor distributions, density split, voids, etc

**Physical Information** 

F. Villaescusa-Navaro et al. (2019)







Power spectrum + Higher order statistics

Marked power spectrum, log. transform, skew spectrum Nearest neighbor distributions, density split, voids, etc

Physical Information

F. Villaescusa-Navaro et al. (2019)



Artificial Intelligence (e.g. CNNs) (Training, interpretability)









Artificial Intelligence (e.g. CNNs)

## AI in Science The Wavelet Scattering Transform (WST)



"Scattering Network" image by G. Exarchakis (2018)



## AI in Science The Wavelet Scattering Transform (WST)

Physical interpretation of WST coefficients

•  $S_0 = \langle |I_0| 
angle$  : Mean field

• 
$$S_1^{j_1,l_1} = \langle \left| I_0 \star \psi^{j_1,l_1} \right| \rangle : \sim P(k). \text{ In fact, } P(k) \longrightarrow \langle \left| I \star e^{-ikx} \right|^2 \rangle$$

•  $S_2^{j_1,l_1,j_2,l_2} = \langle ||I_0 \star \psi^{j_1,l_1}| \star \psi^{j_2,l_2}| \rangle$ : Non-Gaussian information (up to 2<sup>2</sup> = 4pcf, for n=2)

- Basis  $S_0 + S_1 + S_2$  reflects clustering properties of target field  $I_0(x)$
- Retaining all desirable properties of regular P(k) ✓ Mallat (2012)

+

- Compactness 
   ✓
   (Anden & Mallat, 2011,2014, Bruna & Mallat, 2013) & Robustness/Stability 
   ✓
   (Carron 2011,2012, Cheng & Menard 2021b)
- A CNN with fixed weights, but interpretable! (Bruna & Mallat 2013)
  - Performance on par with a CNN in WL applications! (Cheng et al. 2020b, Cheng & Menard 2021a)
- WST exceeds performance of traditional P(k) in 3D LSS studies (Valogiannis & Dvorkin 2022a,b)
  - Also overperforms marked P(k) (Massara et al., PRL 126, 011301 (2021))



## Realistic galaxy survey data

#### However

AI in Science

A program of SCHMIDT FUTURES







- First WST application on 3D redshift-space galaxy density field! (Valogiannis & Dvorkin 2022b)
  - Working with BOSS CMASS DR12 sample at 0.46<z<0.57
  - Northern + Southern Galactic Cap
- For survey data, fundamental quantity of interest is
- the FKP field (Feldman, Kaiser, Peacock et al., 1994) :

$$F(\mathbf{r}) = \frac{w_{\text{FKP}}(\mathbf{r})}{I_2^{1/2}} \begin{bmatrix} w_c(\mathbf{r})n_g(\mathbf{r}) - \alpha_r n_s(\mathbf{r}) \end{bmatrix}$$
  
Galaxies Randoms

• Systematic + FKP weights

 $w_c(\mathbf{r}) = (w_{\rm rf}(\mathbf{r}) + w_{\rm fc}(\mathbf{r}) - 1.0) w_{\rm sys}(\mathbf{r})$  $w_{\rm FKP}(\mathbf{r}) = [1 + \bar{n}_g(\mathbf{r})P_0]^{-1}$ 

- Serves as input into WST network
  - With  $N_{grid} = 270^3$  and  $L_{Box} = 2700 Mpc/h$



SDSS <u>https://blog.sdss.org/</u>



#### Likelihood analysis



• We perform likelihood analysis, sampling from Gaussian likelihood

$$\log \mathcal{L}(\theta | \mathbf{d}) \propto -\frac{1}{2} \left[ \mathbf{X}_{\mathbf{d}} - \mathbf{X}_{t}(\theta) \right]^{\mathrm{T}} C^{-1} \left[ \mathbf{X}_{\mathbf{d}} - \mathbf{X}_{t}(\theta) \right]$$



#### Likelihood analysis



#### • <u>Data</u>

$$\log \mathcal{L}(\theta | \mathbf{d}) \propto -\frac{1}{2} \left( \mathbf{X}_{\mathbf{d}} - \mathbf{X}_{t}(\theta) \right)^{\mathrm{T}} C^{-1} \left[ \mathbf{X}_{\mathbf{d}} - \mathbf{X}_{t}(\theta) \right]$$

- Use vector of WST coefficients as observable
- Extracted from BOSS CMASS FKP field, using
- J=5 scales and L=5 orientations
- $S_0 + S_1 + S_2 = 76$  WST coefficients
- Also, use galaxy 2-point correlation function multipoles  $\xi_{l=0,2}(r)$  ( $r_{min} = 8$  Mpc/h) as benchmark



SDSS <u>https://blog.sdss.org/</u>



#### Likelihood analysis



• Theory model

$$\log \mathcal{L}(\theta | \mathbf{d}) \propto -\frac{1}{2} \left[ \mathbf{X}_{\mathbf{d}} - \mathbf{X}_{t}(\theta) \right]^{\mathrm{T}} C^{-1} \left[ \mathbf{X}_{\mathbf{d}} - \mathbf{X}_{t}(\theta) \right]$$

Capture cosmological dependence using

Abacus Summit simulations (Maksimova et al. 2021, Garrison et al. 2019&2021) HOD tuned to BOSS CMASS at 0.46<z<0.60 with AbacusHOD (**Yuan et al. 2021**) Box L=2000 Mpc/h,  $N_{grid} = 200^3$ 

- Fiducial cosmology from Planck 2018  $\{\omega_b, \omega_c, n_s, \sigma_8\} = \{0.02237, 0.120, 0.9649, 0.8114\}$
- + Fixed angular size of sound horizon at last scattering.  $100\theta_{\star} = 1.041533$
- + 7 HOD model parameters (vanilla HOD + velocity bias)

 $\{\alpha, \alpha_{\rm c}, \alpha_{\rm s}, \kappa, \log M_1, \log M_{\rm cut}, \sigma\} = \{0.9022, 0.2499, 1.1807, 0.3288, 14.313, 12.8881, 0.02084\}$ 

- We cut Abacus cubic boxes into actual CMASS geometry
  - Using 'make survey' (White et al., 2013)



#### Hold-out tests on Abacus mocks



- Tests against out-sample test set of mocks
- Successful parameter recovery in all 40 hold-out tests!!
- Confirms tight 1- $\sigma$  errors using full likelihood/MCMC!
- Marginalized over 7 HOD nuisance parameters
- In agreement with conclusions of (Valogiannis & Dvorkin, 2022b) !

Example of successful parameter recovery from a test mock with low  $\sigma_8$ 

#### AI in Science Hold-out tests on external Uchuu mock A program of SCHMIDT FUTURES

ns

 $\omega_h$ 









## WST Constraints from BOSS CMASS data!



|            | 2-point c.f. |                                 | WST      |                                 | Joint 2-point c.f.+WST |                                 |
|------------|--------------|---------------------------------|----------|---------------------------------|------------------------|---------------------------------|
|            | Best-fit     | $Mean \pm \sigma$               | Best-fit | $Mean \pm \sigma$               | Best-fit               | $Mean \pm \sigma$               |
| $\omega_b$ | 0.02261      | $0.02270^{+0.00037}_{-0.00037}$ | 0.02274  | $0.02277^{+0.00038}_{-0.00038}$ | 0.0225                 | $0.02262^{+0.00029}_{-0.00029}$ |
| $\omega_c$ | 0.1201       | $0.1222^{+0.0040}_{-0.0063}$    | 0.1239   | $0.1244_{-0.0015}^{+0.0015}$    | 0.1238                 | $0.1241^{+0.0011}_{-0.0011}$    |
| $n_s$      | 0.925        | $0.922_{-0.037}^{+0.037}$       | 0.961    | $0.951^{+0.023}_{-0.023}$       | 0.927                  | $0.924_{-0.01}^{+0.01}$         |
| $\sigma_8$ | 0.742        | $0.746^{+0.051}_{-0.051}$       | 0.860    | $0.834_{-0.039}^{+0.058}$       | 0.793                  | $0.795^{+0.019}_{-0.019}$       |
| h          | 0.677        | $0.677^{+0.022}_{-0.015}$       | 0.67     | $0.669^{+0.0059}_{-0.0059}$     | 0.668                  | $0.669^{+0.0049}_{-0.0049}$     |

- WST 1 $\sigma$  errors on  $\omega_c \& n_s 4.2x \& 1.6x$  tighter than  $\xi(r)$
- Joint WST+ξ(r) analysis improves 1σ errors by 2.5-6x compared to ξ(r)-only!
- Joint WST+ $\xi$ (r) analysis improves 1 $\sigma$  errors by 1.4-2.5x compared to WST-only
- Competitive 0.9%, 2.3% & 1% determination of  $\omega_c$ ,  $\sigma_8$  &  $n_s$
- 0.7% determination of  $H_0$ , as a derived parameter from fixed  $\theta_*$



#### AI in Science

# **Competitive Constraints on Structure Growth!**







## WST Constraints from BOSS CMASS data!



|            | 2-point c.f. |                                        | WST      |                                        | Joint 2-point c.f.+WST |                                        |
|------------|--------------|----------------------------------------|----------|----------------------------------------|------------------------|----------------------------------------|
|            | Best-fit     | $\mathrm{Mean} \pm \sigma$             | Best-fit | $Mean \pm \sigma$                      | Best-fit               | $Mean \pm \sigma$                      |
| $\omega_b$ | 0.02261      | $0.02270\substack{+0.00037\\-0.00037}$ | 0.02274  | $0.02277\substack{+0.00038\\-0.00038}$ | 0.0225                 | $0.02262\substack{+0.00029\\-0.00029}$ |
| $\omega_c$ | 0.1201       | $0.1222^{+0.0040}_{-0.0063}$           | 0.1239   | $0.1244_{-0.0015}^{+0.0015}$           | 0.1238                 | $0.1241\substack{+0.0011\\-0.0011}$    |
| $n_s$      | 0.925        | $0.922^{+0.037}_{-0.037}$              | 0.961    | $0.951^{+0.023}_{-0.023}$              | 0.927                  | $0.924_{-0.01}^{+0.01}$                |
| $\sigma_8$ | 0.742        | $0.746^{+0.051}_{-0.051}$              | 0.860    | $0.834_{-0.039}^{+0.058}$              | 0.793                  | $0.795_{-0.019}^{+0.019}$              |
| h          | 0.677        | $0.677^{+0.022}_{-0.015}$              | 0.67     | $0.669^{+0.0059}_{-0.0059}$            | 0.668                  | $0.669^{+0.0049}_{-0.0049}$            |





## Constraints on ACDM extensions



- Joint WST+ $\xi(r)$  analysis allows simultaneous constraints on 4 extensions to  $\Lambda CDM$
- $1\sigma$  consistency with  $\Lambda$ CDM limits

$$w_0 = -1, w_a = 0, a_{\text{run}} = 0, N_{\text{eff}} = 3.046$$

|              | Joint 2-p | Joint 2-point c.f.+WST           |  |  |
|--------------|-----------|----------------------------------|--|--|
|              | Best-fit  | $Mean \pm \sigma$                |  |  |
| $\omega_b$   | 0.02280   | $0.02273^{+0.00036}_{-0.00036}$  |  |  |
| $\omega_c$   | 0.1227    | $0.1239^{+0.0056}_{-0.0056}$     |  |  |
| $\sigma_8$   | 0.748     | $0.751_{-0.040}^{+0.034}$        |  |  |
| $n_s$        | 0.928     | $0.953^{+0.022}_{-0.030}$        |  |  |
| h            | 0.675     | $0.671^{+0.021}_{-0.021}$        |  |  |
| $a_{ m run}$ | 0.002     | $0.004\substack{+0.019\\-0.012}$ |  |  |
| $N_{ m eff}$ | 3.048     | $3.23_{-0.26}^{+0.26}$           |  |  |
| $w_0$        | -1.039    | $-0.995^{+0.061}_{-0.073}$       |  |  |
| $w_a$        | 0.29      | $0.17^{+0.24}_{-0.21}$           |  |  |

# **DESI Year 1 BAO analysis**



E NER GY SPECTROSCOPIC Y W Y O H M MY CHALS NI

See Hector's talk earlier today

arXiv:2404.03002



### WST application to DESI Year 1 data!

AI in Science



Credit: Claire Lamman & Dark Energy Spectroscopic Instrument (DESI)





JUNNE

<u>Alternative Summary Statistics in DESI</u>: Intense activity aiming to fully utilize the constraining power of DESI Y1 data and beyond

AI in Science

A program of SCHMIDT FUTURES



Plot credit: Enrique Paillas & Carolina Cuesta-Lazaro







- <u>Wavelet Scattering Transform</u>: a novel statistic that efficiently extracts non-Gaussian information from physical fields. *Ideal* middle ground between CNN and traditional estimators
- First WST application to actual spectroscopic data (Valogiannis et al., <u>arXiv: 2310.16116, Phys. Rev.</u> <u>D 109, 103503, 2024</u>, Valogiannis & Dvorkin, <u>arXiv: 2204.13717</u>, <u>Phys. Rev. D 105, 103534</u>, 2022)
  - Worked with BOSS CMASS galaxy sample at 0.46<z<0.57
  - Substantial improvement in the  $1\sigma$  errors over traditional galaxy  $\xi(r)$  multipoles
- Ongoing & future improvements (in progress)
  - Can more accurately capture lightcone evolution, fiber collision/systematic effects in galaxy mocks (See talks by Rongpu, Tanveer and discussion section later today!)
  - Design wavelets tailored for cosmological/RSD applications (public package under construction!)
  - Blind mock challenges (see talks this week by Gillian, Elisabeth)
- Future applications
  - <u>Application to DESI</u> (& Euclid)
  - Constrain neutrino mass (Eg. as in Valogiannis & Dvorkin, <u>arXiv: 2108.07821</u>, <u>Phys. Rev. D 105, 103534</u>, 2022)
  - Constrain fundamental physics (theories of gravity (in prep), primordial non-Gaussianity, parity violation)
  - Weak lensing & cross-correlations (HSC, DES, future applications to Rubin LSST & Euclid)
  - Recent applications also to Lyman-a, 21cm cosmology, axion string-induced effects

