

Projection effects in likelihood analyses of galaxy clustering

Andrea Pezzotta (MPE)

with Benjamin Camacho, Martin Crocce, Alexander Eggemeier, Giosue Gambardella, Ariel Sanchez, Roman Scoccimarro, Agne Semenaite

Sesto Workshop, 01/07/2024

Outline

- Cosmology from galaxy clustering
- State-of-art models for galaxy clustering
- Faster model evaluation with evolution mapping and extension to massive neutrinos
- Prior volume effects in cosmological parameter inference
- Conclusions

Galaxy clustering

Why galaxy clustering?

One of the two main cosmological probes to characterise the Large Scale Structure

Galaxy clustering

Weak gravitational lensing

(SDSS)

(HST)

Why galaxy clustering?

One of the two main cosmological probes to characterise the Large Scale Structure

Energy/matter components

Growth of structures

Expansion history

Redshift-space distortions

Peculiar velocities distort the observed distance inferred from the redshift of luminous sources

$$\vec{s} = \vec{r} + \frac{v_{\parallel}}{a H(a)} \hat{e}_r$$

Traditionally split into 2 different regimes (but cannot be treated as independent)

Clustering observables

Anisotropy observable from clustering measurements (e.g. 2PCF, galaxy power spectrum)

Clustering observables

Anisotropy observable from clustering measurements (e.g. 2PCF, galaxy power spectrum)

eBOSS LRGs (Hou et al. 2020)

Clustering observables

Standard analyses focus on the projection of anisotropic clustering measurements

• Clustering wedges

$$\xi_{\Delta\mu}(s) = \frac{1}{\Delta\mu} \int_{\Delta\mu} \xi(s,\mu) \,\mathrm{d}\mu$$

• Legendre multipoles

$$\xi_{\ell}(s) = \frac{2\ell + 1}{2} \int_{-1}^{+1} \xi(s, \mu) \mathscr{L}_{\ell}(\mu) \, \mathrm{d}\mu$$

Perturbative approaches can be employed to describe clustering measurements

$$\delta_{\rm g} = b_1 \delta + b_{\nabla^2 \delta} \nabla^2 \delta + \varepsilon + \frac{b_2}{2} \delta^2 + b_{\mathcal{G}_2} \left[\left(\partial_i \partial_j \Phi \right)^2 - \left(\nabla^2 \Phi \right)^2 \right] + \dots$$

- Nonlinear evolution of the matter density field
- Galaxy bias (relationship between galaxy and matter density field)
- Redshift-space distortions

Employed for the analysis of Stage-III data (e.g. BOSS)

Perturbative approaches can be employed to describe clustering measurements

$$\delta_{\rm g} = b_1 \delta + b_{\nabla^2 \delta} \nabla^2 \delta + \varepsilon + \frac{b_2}{2} \delta^2 + b_{\mathcal{G}_2} \left[\left(\partial_i \partial_j \Phi \right)^2 - \left(\nabla^2 \Phi \right)^2 \right] + \dots$$

- Nonlinear evolution of the matter density field
- Galaxy bias (relationship between galaxy and matter density field)
- Redshift-space distortions

Andrea Pezzotta, Sesto workshop, 01/07/2024

Planck prior on ω_b

BBN prior on ω_b

State-of-art modelling of redshift-space galaxy power spectrum: **EFTofLSS**

$$P_{gg}^{s}(k,\mu) = P_{gg}^{s,\text{tree}}(k,\mu) + P_{gg}^{s,\text{1-loop}}(k,\mu) + P_{gg}^{s,\text{noise}}(k,\mu) + P_{gg}^{s,\text{ctr}}(k,\mu)$$

State-of-art modelling of redshift-space galaxy power spectrum: **EFTofLSS**

Fully perturbative model including:

- Local and non-local bias
- Shot-noise corrections (constant and scale-dependent)
- **Counterterms** (from expanding pairwise velocity difference, i.e. FOGs; integration of UV modes, higher-derivatives, velocity bias)
- **Resummation of infrared modes** (need recipe to obtain the no-wiggle *P*(*k*))
- 11 nuisance parameters, some of them highly degenerate in terms of $P_{gg}^{s}(k,\mu)$

Speeding up model evaluation

Using PT: is it worth?

IT IS ACCURATE!

- Optimal performances over mildly nonlinear scales
- Flexible enough to accommodate different models
- Extensively employed to derive cosmological constraints from GC data

IT CAN ALSO BE SLOW...

- Standard bayesian inference can request up to $\mathcal{O}(10^6)$ likelihood evaluations
- Evaluation time for a single model can be relevant $\mathcal{O}(s)$
- Even more expensive when considering higher-order statistics
- Additional time lost to account for observational systematics

One solution (out of fews): we can make use of EMULATORS

Based on the split of cosmological parameters into shape and evolution

$$\boldsymbol{\Theta}_{\mathrm{s}} = \{\omega_{\mathrm{c}}, \omega_{\mathrm{b}}, \omega_{\gamma}, n_{\mathrm{s}}, \dots\}$$

Shape of matter transfer function and primordial power spectrum

$$\boldsymbol{\Theta}_{\mathrm{e}} = \{H_0, \omega_{\mathrm{K}}, \omega_{\mathrm{DE}}, w(a), A_{\mathrm{s}}, \dots\}$$

Overall **amplitude of power spectrum** at any redshift *z*

New parameter describing the **degeneracy among evolution parameters** (and redshift):

$$\sigma_{12} = \int \mathrm{d}k \, k^2 \, P(k) \, W_{\mathrm{TH}}^2(kR) \, \bigg|_{R=12 \mathrm{Mpc}}$$

Same power spectrum when considering models with same shape and σ_{12}

$$P_{\text{lin}}(k | \Theta_{\text{s}}, \Theta_{\text{e}}, z) = P_{\text{lin}}(k | \Theta_{\text{s}}, \sigma_{12}(\Theta_{\text{s}}, \Theta_{\text{e}}, z))$$

Let's see it directly with an example: three cosmologies with same Θ_s but different Θ_e

Let's see it directly with an example: three cosmologies with same Θ_s but different Θ_e

Let's see it directly with an example: three cosmologies with same Θ_s but different Θ_e

- Mapping is propagated to the non-linear regime (need to correct for different history of structure formation, though)
- Applies to other statistics, like velocity power spectra (Esposito et al. 2024), higher-order statistics, halo mass functions, etc.
- Use of Mpc/*h* units to express distances breaks the degeneracy

Massive neutrinos break the original formulation of evolution mapping

Redshift evolution induces a modification in the shape of the matter power spectrum

Time variables (*z*, *a*) can no longer be described in terms of σ_{12}

Massive neutrinos break the original formulation of evolution mapping

Redshift evolution induces a modification in the shape of the matter power spectrum

Time variables (*z*, *a*) can no longer be described in terms of σ_{12}

Relevant for Stage-III experiments, since constraining power on M_{ν} from GC-only data is loose

Large-scale amplitude is (partially) recovered only matching σ_{12} of the neutrino-free cosmology ($\omega_c \rightarrow \omega_c + \omega_\nu$, $\omega_\nu = 0$), but small-scale differences are important!

Large-scale amplitude is (partially) recovered only matching σ_{12} of the neutrino-free cosmology ($\omega_c \rightarrow \omega_c + \omega_\nu$, $\omega_\nu = 0$), but small-scale differences are important!

Large-scale amplitude is (partially) recovered only matching σ_{12} of the neutrino-free cosmology ($\omega_c \rightarrow \omega_c + \omega_\nu$, $\omega_\nu = 0$), but small-scale differences are important!

Large-scale amplitude is (partially) recovered only matching σ_{12} of the neutrino-free cosmology ($\omega_c \rightarrow \omega_c + \omega_\nu$, $\omega_\nu = 0$), but small-scale differences are important!

Large-scale amplitude is (partially) recovered only matching σ_{12} of the neutrino-free cosmology ($\omega_c \rightarrow \omega_c + \omega_\nu$, $\omega_\nu = 0$), but small-scale differences are important!

 $P_{\text{lin}}(k | \Theta_{\text{s}}, \Theta_{\text{e}}, z) = P_{\text{lin}}(k | \Theta_{\text{s}}, \sigma_{12}(\Theta_{\text{s}}, \Theta_{\text{e}}, z))$

Large-scale amplitude is (partially) recovered only matching σ_{12} of the neutrino-free cosmology ($\omega_c \rightarrow \omega_c + \omega_\nu$, $\omega_\nu = 0$), but small-scale differences are important!

 $P_{\text{lin}}(k | \Theta_{s}^{\star}, \Theta_{e}^{\star}, z) = P_{\text{lin}}(k | \Theta_{s}^{\star}, \tilde{\sigma}_{12}(\Theta_{s}^{\star}, \Theta_{e}^{\star}, z))$

New implementation in COMET

- Emulation of perturbation theory to speed up model evaluation
- Based on evolution mapping to reduce dimensionality of parameter space
- Flexibility to incorporate different PT models (EFT, VDG, ...)
- V1 (without massive neutrinos) public (Eggemeier et al. 2023)
 - git clone git@gitlab.com:aegge/comet-emu.git
 - pip install comet-emu
- Finalising V2 (massive neutrinos + extra features)

$$\left\{\omega_{\mathrm{c}}, \omega_{\mathrm{b}}, n_{\mathrm{s}}, \sigma_{12}, f\right\} \rightarrow \left\{\omega_{\mathrm{c}}, \omega_{\mathrm{b}}, M_{\nu}, n_{\mathrm{s}}, A_{\mathrm{s}}, \sigma_{12}, f\right\}$$

Accuracy better than 0.2% for ~90% of the validation sample (monopole)

Evaluation time decreases to O(10 ms)

Bayesian analyses can be affected by **projection effects** during the marginalisation over nuisance parameters

Test with synthetic data vectors

- 4 redshift bins $\overline{z} = \{1, 1.2, 1.4, 1.65\}$
- Final mission sky fraction ($\sim 15000 \text{ deg}^2$)
- *w*CDM cosmology
- Marginalisation over 6 nuisance parameters per bin $(b_1, b_2, c_0, c_2, c_4, \alpha_P)$

The importance of projection effects is more relevant when

- exploring high dimensional parameter space
- exploring non-Gaussian likelihoods (which is typically the case for spectroscopic galaxy clustering)

Let's assume to have a model (with parameters θ) that describes some data **d**

Parameters of interest
(cosmology)
Parameters to marginalise over
(nuisance, bias, RSD, systematics)
The marginalised posterior distribution of
$$\vec{\Omega}$$
 is $\mathbf{P}(\vec{\Omega} | \mathbf{d}) = \int \mathbf{d}\vec{n} \ \mathbf{P}(\vec{\Omega}, \vec{n} | \mathbf{d})$
We can expand $\chi^2 \equiv -2\log \mathbf{P}$ around the nuisance parameters $\vec{n}_{\star}(\vec{\Omega})$ that maximise
the posterior
$$\chi^2(\vec{\Omega}, \vec{n}) \simeq \chi^2_{\star}(\vec{\Omega}) + \Delta \vec{n}^T \mathcal{F}_{\star} \Delta \vec{n} + \dots$$
After marginalisation of \vec{n} , this reads
$$\chi^2_{marg}(\vec{\Omega}) \simeq \chi^2_{\star}(\vec{\Omega}) + \log\{\det[\mathcal{F}_{\star}(\vec{\Omega})]\}$$
Profile likelihood
$$(\mathbf{R}, \mathbf{n}) = \int \mathbf{d}\vec{n} \ \mathbf{P}(\vec{n}, \mathbf{n}) = \int \mathbf{d}\vec{n} \ \mathbf{P}(\vec{n}, \mathbf{n}) \mathbf{P}(\vec{n}) \mathbf{P}(\vec$$

(only depends on data)

(prior volume of nuisance parameters)

Let's assume to have a model (with parameters θ) that describes some data **d**

 $\vec{\theta} = \{ \vec{\Omega}, \vec{n} \}$

The marginalised posterior distribution of $\vec{\Omega}$ is $\mathbf{P}(\vec{\Omega} \mid \mathbf{d}) = \left[\mathbf{d} \vec{n} \mathbf{P}(\vec{\Omega}, \vec{n} \mid \mathbf{d}) \right]$

We can expand $\chi^2 \equiv -2\log \mathbf{P}$ around the nuisance parameters $\vec{n}_{\star}(\vec{\Omega})$ that maximise the posterior

$$\chi^2(\overrightarrow{\Omega}, \overrightarrow{n}) \simeq \chi^2_\star(\overrightarrow{\Omega}) + \Delta \overrightarrow{n}^T \mathcal{F}_\star \Delta \overrightarrow{n} + \dots$$

After marginalisation of \overrightarrow{n} , this reads

Parameters of interest

(cosmology)

(only depends on data)

(prior volume of nuisance parameters)

Parameters to marginalise over (nuisance, bias, RSD, systematics)

Let's assume to have a model (with parameters θ) that describes some data ${f d}$

 $\vec{\theta} = \{\vec{\Omega}, \vec{n}\}$

The marginalised posterior distribution of $\vec{\Omega}$ is $\mathbf{P}(\vec{\Omega} \mid \mathbf{d}) = \left[d\vec{n} \mathbf{P}(\vec{\Omega}, \vec{n} \mid \mathbf{d}) \right]$

We can expand $\chi^2 \equiv -2\log \mathbf{P}$ around the nuisance parameters $\vec{n}_{\star}(\vec{\Omega})$ that maximise the posterior

Parameters of interest (cosmology) Parameters to marginalise over (nuisance, bias, RSD, systematics)

$$\chi^2(\overrightarrow{\Omega}, \overrightarrow{n}) \simeq \chi^2_{\star}(\overrightarrow{\Omega}) + \Delta \overrightarrow{n}^T \mathscr{F}_{\star} \Delta \overrightarrow{n} + \dots$$

After marginalisation of \overrightarrow{n} , this reads

(cosmology)

$$\chi^2_{\text{marg}}(\vec{\Omega}) \simeq \chi^2_{\star}(\vec{\Omega}) + \log\{\det[\mathscr{F}_{\star}(\vec{\Omega})]\}$$
Profile likelihood
(only depends on data)
Profile likelihood
(prior volume of nuisance parameters)

Potential solutions

Potential solutions

2) Using priors on nuisance parameters

Tight priors on parameters that are mostly responsible for appearance of projection effects (e.g. counterterms)

Pros

- Optimal choices such as **Jeffreys priors**
- Encouraged when using RSD models where counterterms are not essential (e.g. VDG)

Cons

• Not in agreement with Bayesian formalism

Conclusions

- Perturbative models will still play a pivotal role in the analysis of Stage-IV data
 - Already reached a sufficient level of maturity
 - Different models to test scale cuts, theory systematics, constraining power, etc
 - Posterior validation thanks to many public codes
- Speeding up the model evaluation is essential
 - Use of theory emulators to maintain accuracy of PT-based models
 - Evolution mapping is an easy way to reduce the number of parameters of the emulators (works with massive neutrinos)
- Prior volume effects as one of the major limitations in the use of these models
 - Due to non-Gaussianity of likelihood
 - Potential ways to reduce their impact requires a questioning of standard Bayesian methods:
 - profile likelihood
 - Jeffrey's priors
 - tight priors on nuisances
 - reparametrization
 - use of alternative models