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Overview

• Basics of Persistent homology
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• Lessons form the Noisy Circle

 

Information Maximizing Persistent Homology (IMPH)



Motivation
Information maximizing neural network + differentiability of persistent homology = IMPH

• Persistent homology captures the LSS morphology as a distribution of 
clusters, loops and voids across scales.


• It is a geometric way to organise information from higher order correlations.



Motivation
Information maximizing neural network + differentiability of persistent homology = IMPH

• Persistent homology captures the LSS morphology as a distribution of 
clusters, loops and voids across scales.


• It is a geometric way to organise information from higher order correlations.


• Does it give better constraints for the cosmological and PNG parameters?



Motivation
Information maximizing neural network + differentiability of persistent homology = IMPH

• Persistent homology captures the LSS morphology as a distribution of 
clusters, loops and voids across scales.


• Different hyperparameter choices in TDA probe different physics. We would 
like a systematic way of making optimal choices to suit the problem at hand.



Motivation
Information maximizing neural network + differentiability of persistent homology = IMPH

• Persistent homology captures the LSS morphology as a distribution of 
clusters, loops and voids across scales.


• Different hyperparameter choices in TDA probe different physics. We would 
like a systematic way of making optimal choices to suit the problem at hand.


• Differentiability of persistence homology allows us to employ gradient descent 
based methods. Can we find the optimal choices by maximizing the Fisher 
information of the resultant persistent summaries?
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Persistent Homology 101 
Multicale decomposition of clusters, loops and voids.
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Introduction to Persistent Homology
Topological Data Analysis

• Compute the shape of discrete data via its multiscale topology - clusters, 
loops and voids.


• Offers a flexible that can also encode local density and knn statistics.


• Applications


• Sensor networks, image processing, genomics, protein structure, 
neuroscience, physics and now to study large language models.



b0 = 100
b1 = 0

Introduction to Persistent Homology
Homology of a point cloud
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b0 = 1
b1 = 0

Length scale parameter 
 

imagine a ball of radius , when 
balls touch simplices are added 

to the complex

ν = 13

ν

Simplicial Complex

Introduction to Persistent Homology
Changing homology across scales



Introduce a Distance-To-Measure function

DTM(x) =
1
k ∑

xi∈Nk(x)

|x − xi |
p

1/p

 : # of nearest neighbours
 : the set of -nearest neighbours of 

 : a mixing parameter (e.g. ) 

k
Nk(x) k x
p p = 2

We can delay addition of outliers by penalising them if they are far apart from everything else

The DTM function
A filtration robust to outliers

   A filtration function 
takes assigns a real 
number to each 
point in the point 
cloud.



We can delay addition of outliers by penalising them if they are far apart from everything else

Anai, Chazal, Glisse, Ike, Inakoshi, Tinarrage, Umeda (2018)

The DTM function
A filtration robust to outliers

https://www.youtube.com/watch?v=NJ_SpkOCEQc


We can then draw a persistence diagram,   , as a function of  νpersist = νdeath − νbirth νbirth

Introduction to Persistent Homology
Tracking persistent features
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diagram as a list 

of birth and 
death times.



Summarising persistence diagrams
Histograms

Persistence 
diagram as a list 

of birth and 
death times.
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Persistent Features of Large 
Scale Structure

https://arxiv.org/abs/2403.13985 - with Yip, Biagetti et. al.

https://arxiv.org/abs/2403.13985


Implementation Details
• Dataset - Quijote simulations 


• Filtration - AlphaDTM filtration for k = (1, 5, 15, 30, 60, 100).


• Vectorization - Histogram of counts.
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Fisher contours for cosmological parameters
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• The contours from 
combining PH and PS + BS 
are more constraining in 
most of the cases.


• This could be because PH is 
assessing information of 
higher order correlators.




Fisher contours for cosmological parameters
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• The contours from 
combining PH and PS + BS 
are more constraining in 
most of the cases.


• This could be because PH is 
assessing information of 
higher order correlators.


• The parameter degeneracies 
for our statistic are in 
directions fairly different 
from those for the joint 
power spectrum and 
bispectrum statistic 



Fisher contours for PNG amplitudes
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• Tighter constraints for 
equilateral and orthogonal PNG.


• Local PNG better constrained 
by joint power spectrum and 
bispectrum since most of the 
information is in the larger scale 
and not many cycles persist in 
the large scales.
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• AlphaDTM filtration with k = (1, 5, 15, 30, 60, 100)


• Histogram of counts to summarise the resulting persistence diagrams.



Summary of choices
A set of discrete choices that work well together

• AlphaDTM filtration with k = (1, 5, 15, 30, 60, 100)


• Histogram of counts to summarise the resulting persistence diagrams.


• These were empirical choice. Can we come up with a more versatile way of 
deciding on the filtration and vectorization?


• The resulting summaries can then be used as a part of an inference pipeline.



Before checking this on DM halo 
simulations, we try our method on a 
simpler example - the noisy circle.



Extract information about radius (and variance) from a noisy ring

Noisy ring: mixture of uniform distribution and gaussian distribution around ring of unit radius 
(200 points) + 20 background points as noise (uniformly distributed)

Tractable 
Fisher 

information!

Information Maximizing Persistent Homology
The noisy circle To appear- with Biagetti, Yip, van der Schaar, et. al.



The noisy circle

Extract information about radius (and variance) from a noisy ring

Noisy ring: mixture of uniform distribution and gaussian distribution around ring of unit radius 
(200 points) + 20 background points as noise (uniformly distributed)

Tractable 
Fisher 

information!

Can we learn an 
optimal filtration 

function that 
optimises the 

Fisher 
Information?

Information Maximizing Persistent Homology
To appear- with Biagetti, Yip, van der Schaar, et. al.



Information Maximizing Persistent Homology
The noisy circle

• We consider a neural network that takes the k nearest neighbour distances as 
input and outputs the filtration value for each vertex.


• The Fisher Information is calculated on the resulting persistence summaries.


• The filtration function is learnt to maximise the Fisher Information. 

To appear- with Biagetti, Yip, van der Schaar, et. al.



Information Maximizing Persistent Homology
The noisy circle

• We consider a neural network that takes the k nearest neighbour distances as 
input and outputs the filtration value for each vertex.


• The Fisher Information is calculated on the resulting persistence summaries.


• The filtration function is learnt to maximise the Fisher Information. 


• To summarise the persistence diagram


• We compress summaries using MOPED and IMNN that give more accurate 
and trustable estimates. 


• Uncompressed summaries overestimate the Fisher information due to 
imprecise derivatives and presence of high dimensional non-Gaussianity.

To appear- with Biagetti, Yip, van der Schaar, et. al.



Information Maximizing Filtrations
Can we learn the optimal filtration?

Point cloud

To appear- with Biagetti, Yip, 
van der Schaar, et. al.
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Information Maximizing Filtrations
Can we learn the optimal filtration?

The distance to 
measure functionPoint cloud

Untrained 
filtration function Trained filtration 

function

To appear- with Biagetti, Yip, 
van der Schaar, et. al.



Information Maximizing Persistent Homology
Proof of concept using galaxy catalogs To appear- with Biagetti, 

Yip, van der Schaar, et. al.

Sancho galaxy 
catalogs


developed by 
Biagetti et. al.  
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Conclusion and Outlook
• Persistent Homology combined with Power spectrum and Bispectrum gives 

more constrained contours.


• Can we further improve these contours by using the IMPH -


• Is there an information maximizing filtration?


• Can other persistence summaries give more information?


• Why are parameter degeneracies for PH statistics different from combined 
power spectrum and bispectrum statistics?


• Coming soon in our next paper.



Thank you!


