Information Maximizing Persistent Homology

Accurate Fisher forecasts for persistent summaries.

Alex Cole **DE Shaw**

Matteo Biagetti **AREA** Trieste

Karthik Viswanathan **U. Amsterdam**

Jacky Yip **U.** Wisconsin-Madison

J.P. van der Schaar **U.** Amsterdam

Overview

Information Maximizing Persistent Homology (IMPH)

Basics of Persistent homology

Overview

Information Maximizing Persistent Homology (IMPH)

- Basics of Persistent homology
- Persistent features of Large Scale Structure

https://arxiv.org/abs/2403.13985 - with Yip, Biagetti et. al.

Overview

Information Maximizing Persistent Homology (IMPH)

- Basics of Persistent homology
- Lessons form the Noisy Circle

- Persistent homology captures the LSS morphology as a distribution of clusters, loops and voids across scales.

Information maximizing neural network + differentiability of persistent homology = IMPH

It is a geometric way to organise information from higher order correlations.

- Persistent homology captures the LSS morphology as a distribution of clusters, loops and voids across scales.
 - It is a geometric way to organise information from higher order correlations.
 - Does it give better constraints for the cosmological and PNG parameters?

Information maximizing neural network + differentiability of persistent homology = IMPH

- Persistent homology captures the LSS morphology as a distribution of clusters, loops and voids across scales.
- Different hyperparameter choices in TDA probe different physics. We would like a systematic way of making optimal choices to suit the problem at hand.

Information maximizing neural network + differentiability of persistent homology = IMPH

- Persistent homology captures the LSS morphology as a distribution of clusters, loops and voids across scales.
- Different hyperparameter choices in TDA probe different physics. We would like a systematic way of making optimal choices to suit the problem at hand.
- Differentiability of persistence homology allows us to employ gradient descent based methods. Can we find the optimal choices by maximizing the Fisher information of the resultant persistent summaries?

Information maximizing neural network + differentiability of persistent homology = IMPH

Persistent Homology 101

Persistent Homology 101

Multicale decomposition of clusters, loops and voids.

Introduction to Persistent Homology Topology and Homology

topologically equivalent

not topologically equivalent

Introduction to Persistent Homology Topology and Homology

Introduction to Persistent Homology Topological Data Analysis

- Compute the shape of discrete data via its multiscale topology clusters, loops and voids.
- Offers a flexible that can also encode local density and knn statistics.
- Applications
 - Sensor networks, image processing, genomics, protein structure, neuroscience, physics and now to study large language models.

Introduction to Persistent Homology Homology of a point cloud

 $b_0 = 100$ $b_1 = 0$

Introduction to Persistent Homology Adding simplices

 $b_0 = 100$ $b_1 = 0$

Introduction to Persistent Homology Adding simplices

 $b_0 = 17$ $b_1 = 5$

$\nu = 5$ Length scale parameter

imagine a ball of radius ν , when balls touch simplices are added to the complex

 $b_0 = 17$ $b_1 = 5$

$\nu = 8$ Length scale parameter

imagine a ball of radius ν , when balls touch simplices are added to the complex

 $b_0 = 1$ $b_1 = 7$

$\nu = 10$ Length scale parameter

imagine a ball of radius ν , when balls touch simplices are added to the complex

 $b_0 = 1$ $b_1 = 5$

$\nu = 13$ Length scale parameter

imagine a ball of radius ν , when balls touch simplices are added to the complex

 $b_0 = 1$ $b_1 = 0$

The DTM function A filtration robust to outliers

We can *delay* addition of outliers by penalising them if they are far apart from everything else

Introduce a Distance-To-Measure function

$$DTM(x) = \left(\frac{1}{k}\sum_{x_i \in N_k(x)} x - x_i\right)$$

k : # of nearest neighbours $N_k(x)$: the set of *k*-nearest neighbours of *x* p: a mixing parameter (e.g. p = 2)

1/pp

A filtration function takes assigns a real number to each point in the point cloud.

The DTM function A filtration robust to outliers

We can *delay* addition of outliers by penalising them if they are far apart from everything else

Anai, Chazal, Glisse, Ike, Inakoshi, Tinarrage, Umeda (2018)

Introduction to Persistent Homology **Tracking persistent features**

We can then draw a persistence diagram, $\nu_{\text{persist}} = \nu_{\text{death}} - \nu_{\text{birth}}$, as a function of ν_{birth}

Summarising persistence diagrams Histograms

				100	
ID	Dimension		\square	-	\square
1	0		0		0.5
2	0		0		0.707
3	0		0		1
100	0		0		inf
101	1		8.732		8.733
178	1		7.632		12.029
179	1	,	8.485		12.889
180	1		6.718	/	2.905
					\backslash /
			\vee		\bigvee

Persistence diagram as a list of birth and death times.

Summarising persistence diagrams Histograms

Persistence diagram as a list of birth and death times.

Different homology dimensions

Different homology dimensions

Persistent Features of Large Scale Structure

https://arxiv.org/abs/2403.13985 - with Yip, Biagetti et. al.

Implementation Details

- Dataset Quijote simulations
- Filtration AlphaDTM filtration for k = (1, 5, 15, 30, 60, 100).
- Vectorization Histogram of counts.

Fisher contours for cosmological parameters

- The contours from combining PH and PS + BS are more constraining in most of the cases.
- This could be because PH is assessing information of higher order correlators.

Fisher contours for cosmological parameters

- The contours from combining PH and PS + BS are more constraining in most of the cases.
- This could be because PH is assessing information of higher order correlators.
- The parameter degeneracies for our statistic are in directions fairly different from those for the joint power spectrum and bispectrum statistic

Fisher contours for PNG amplitudes

- Tighter constraints for equilateral and orthogonal PNG.
- Local PNG better constrained by joint power spectrum and bispectrum since most of the information is in the larger scale and not many cycles persist in the large scales.

Summary of choices A set of discrete choices that work well together

- AlphaDTM filtration with k = (1, 5, 15, 30, 60, 100)
- Histogram of counts to summarise the resulting persistence diagrams.

Summary of choices A set of discrete choices that work well together

- AlphaDTM filtration with k = (1, 5, 15, 30, 60, 100)
- Histogram of counts to summarise the resulting persistence diagrams.
- These were empirical choice. Can we come up with a more versatile way of deciding on the filtration and vectorization?
- The resulting summaries can then be used as a part of an inference pipeline.

Before checking this on DM halo simulations, we try our method on a simpler example - the noisy circle.

Extract information about radius (and variance) from a noisy ring

Noisy ring: mixture of uniform distribution and gaussian distribution around ring of unit radius (200 points) + 20 background points as noise (uniformly distributed)

Extract information about radius (and variance) from a noisy ring

Noisy ring: mixture of uniform distribution and gaussian distribution around ring of unit radius (200 points) + 20 background points as noise (uniformly distributed)

Can we learn an optimal filtration function that optimises the Fisher Information?

- We consider a neural network that takes the k nearest neighbour distances as input and outputs the filtration value for each vertex.
- The Fisher Information is calculated on the resulting persistence summaries.
- The filtration function is learnt to maximise the Fisher Information.

- We consider a neural network that takes the k nearest neighbour distances as input and outputs the filtration value for each vertex.
- The Fisher Information is calculated on the resulting persistence summaries.
- The filtration function is learnt to maximise the Fisher Information.
- To summarise the persistence diagram
 - We compress summaries using MOPED and IMNN that give more accurate and trustable estimates.
 - Uncompressed summaries overestimate the Fisher information due to imprecise derivatives and presence of high dimensional non-Gaussianity.

Point cloud

Point cloud

The distance to measure function

Point cloud

Untrained filtration function

-0.450

Point cloud

Untrained filtration function

The distance to measure function

Trained filtration function

Information Maximizing Persistent Homology **Proof of concept using galaxy catalogs** To appear- with Biagetti,

Sancho galaxy catalogs developed by Biagetti et. al.

Yip, van der Schaar, et. al.

Conclusion and Outlook

more constrained contours.

Persistent Homology combined with Power spectrum and Bispectrum gives

Conclusion and Outlook

- Persistent Homology combined with Power spectrum and Bispectrum gives more constrained contours.
- Can we further improve these contours by using the IMPH -
 - Is there an information maximizing filtration?
 - Can other persistence summaries give more information?
 - Why are parameter degeneracies for PH statistics different from combined power spectrum and bispectrum statistics?
 - Coming soon in our next paper.

