The matter-radiation-equality scale: Robustness criterion on ultra-large scales and new insights into the Hubble tension

Benedict Bahr-Kalus
IP2I Lyon, soon INAF Torino

In collaboration with:

David Parkinson (KASI) & Eva-Maria Mueller (University of Sussex)

arXiv:2302.07484

With contributions from Edmond Chaussidon, Arnaud de Mattia, Pigi Monaco, Daniel Forero-Sanchez

During Radiation Domination

 Pressure stabilises subhorizon perturbations

During Matter Domination

Perturbations grow as

 $\delta_{\rm m} \propto \overline{a}$

Radiation- vs Matter

Domination

Radiation- vs Matter

Domination

Model-independent approach

- Alternative to Full Modelling: <u>Localising</u>
 Turnover scale similar to what we do
 with BAO (compressed analysis)
- Parameterisation following [Poole et al. 2011]:
 - two slopes (m, n)
 - ullet One amplitude $P_{
 m max}$
 - ullet One turn-over scale $k_{
 m max}$
 - $\bullet k_{\text{max,fid}} = 0.0166 h/\text{Mpc}$
- ullet Probability of m>0 gives turn-over detection probability
- Note m, n different to ShapeFit parameters (but highly correlated)

Model-independent approach: Deprojecting modelling systematics

- 4-parameter power spectrum good approximation around turnover, but fails at max smaller scales
- Scale cuts remove important broad-band information
- Increase covariance matrix $\tilde{\mathbf{C}} = \mathbf{C} + \lim_{t \to \infty} \tau \mathbf{f}^{\mathrm{BAO}} \mathbf{f}^{\mathrm{BAO}}$ by expected inaccuracy of model $\mathbf{f}_k^{\mathrm{BAO}} = P_{\mathrm{fid}}(k) P_{\mathrm{eq,BF}}^{1-n_{\mathrm{BF}}x^2}$
- ullet Method does not bias k_{TO} -measurement

Turnover scale as robustness criterion

- Turnover scale at scales often plagued by ULS systematics
 - e.g. large enough volume in BOSS CMASS and eBOSS ELGs but no TO
- However, TO shifts by less than 1% for reasonable values of $f_{\rm NL}$ [Cunnington 2022]
- Finding TO in the right spot thus provides confidence for potential detections of PNG

Radial integral constraint

- Radial selection function of random catalogue calibrated on radial distribution of data
- Nulling of radial modes [de Mattia&Ruhlmann-Kleider19]
- Radial integral constraint crucial for DESI LRG ultralarge-scale measurements
- Preserves position of DESI LRG turnover

[de Mattia&Ruhlmann-Kleider19]

TO as standard ruler

ullet Analogous to BAO (cf. Hector's talk), define $r_{
m d}$ -independent standard ruler

$$lpha_{\mathrm{TO}} = rac{D_{\mathrm{V}}^{\mathrm{fid}}}{D_{\mathrm{V}}} rac{r_{\mathrm{H}}}{r_{\mathrm{H}}^{\mathrm{fid}}}$$

- $r_{
 m H} \propto \left(\Omega_{
 m m}h^2\right)^{-2}$, so we can measure H_0 independent of $r_{
 m d}$ and BBN when combining with $\Omega_{
 m m}$ from, e.g., BAO
- Test of Universe at z = 3400 rather than z = 1100, Early Dark Energy?
 Alternatively, test neutrino sector
- ullet Independent of BAO, only mildly correlated with ShapeFit parameter $m_{
 m SF}$ and $f\sigma_8$
- Can we get tighter cosmology constraints w/out full modeling by combining BAO+SF+TO?

Application to eBOSS

- Most redshift surveys don't probe enough volume to probe scales $k < k_{\mathrm{TO,fid}} = 0.0166 h/\mathrm{Mpc}$
- Largest pre-DESI spectroscopic data: eBOSS QSO
 - 343 708 Quasars, 0.8 < z < 2.2, $4699 deg^2$
 - We use Rezaie et al. (2021)'s P(k) measurement and randoms with systematic weights optimised for eBOSS DR16 $f_{
 m NL}$ measurement [Mueller et al. 2021]

eBOSS ultra-large-scale systematic treatment

eBOSS QSO DR16 [Mueller et al. 2021]

Train neural network on 60% of the sky, validate on 20%, test on remaining 20% (SYSNet [Rezaie et al. 2021])

17 systematic maps (stars, dust, imaging depth, airmass, etc.)

Great flexibility for response shape (though overfitting is a problem)

Allows to include cross-correlations between foregrounds

- At largest scales: Gaussian assumption on power spectrum likelihood breaks down
- Windowed P(k) hypoexponentially distributed [Peacock&Nicholson91]
- Well-approximated by Gammadistribution [Wang+19]
- Gaussianisation through Box-Cox transformation $Z = \begin{bmatrix} P(k) \end{bmatrix}^{\nu}$

- At largest scales: Gaussian assumption on power spectrum likelihood breaks down
- Windowed P(k) hypoexponentially distributed [Peacock&Nicholson91]
- Well-approximated by Gammadistribution [Wang+19]
- Gaussianisation through Box-Cox transformation $Z = \begin{bmatrix} P(k) \end{bmatrix}^{\nu}$

- Unfortunately, no evidence for m > 0
- However, we do find inflection point at the expected scale
 - Fiducial value: $k_{\text{TO,fid}} = 16.6 \times 10^{-3} h/\text{Mpc}$
 - With Gaussianised Γ -distributed P(k) [Wang et al. 2019]: $k_{\text{TO}} = \left(17.6^{+1.9}_{-1.8}\right) \times 10^{-3} h/\text{Mpc}$

- Unfortunately, no evidence for m > 0
- However, we do find inflection point at the expected scale
 - Fiducial value: $k_{\text{TO.fid}} = 16.6 \times 10^{-3} h/\text{Mpc}$
 - With Gaussianised Γ -distributed P(k) [Wang et al. 2019]: $k_{\text{TO}} = \left(17.6^{+1.9}_{-1.8}\right) \times 10^{-3} h/\text{Mpc}$

- Assume inflection point is turnover
- $\alpha_{\text{TO}} = 1.06 \pm 0.11$
- σ cf. $\alpha_{
 m bao}=1.025\pm0.020$ [Neveux et al. 2020]

- Assuming 3 standard massless neutrino species, direct measurement of $\Omega_{\rm m}h^2=0.159^{+0.041}_{-0.037}$, consistent with Planck ($\Omega_{\rm m}h^2=0.1430\pm0.0011$)
- In combination with $\Omega_{\rm m}$ from BAO or SNe, we get $H_0=\left(74.7\pm9.6\right)~{\rm km/s/Mpc}~{\rm (with~Pantheon)}~{\rm and}$ $H_0=\left(72.9^{+10.0}_{-8.6}\right)~{\rm km/s/Mpc}~{\rm (with~eBOSS~LRG~and~Ly}\alpha~{\rm BAO})~{\rm without}$ any sound horizon information

Stage IV forecasts

- DESI QSO similarly deep as eBOSS QSO sample
 -> no access to new scales, but 3 times the area
- ullet $V_{
 m eff}$ ~ 8 times larger (at TO scale)
- $\mathcal{P}(m > 0) = 0.96$
- $\alpha_{\rm eq} = 0.973^{+0.028}_{-0.029}$
- Already twice as many QSOs observed in DESI Y1 than by eBOSS
- LRGs promising, challenges with ELGs (see Rongpu's talk)
- Year 1 forecasts from Euclid Large Mocks (thanks Pigi) comparable with DESI Y1
- Will Euclid photo-z add information?

Conclusions

- eBOSS QSO power spectrum not precise enough to determine gradient on scales larger than the turnover
- Scale of turnover in agreement expectation
- More than 1-sigma turnover signal with DESI and Euclid Y1

