New Strategies for Extracting Cosmology from Galaxy Surveys @ Sesto, 2024

Alex Eggemeier Argelander Fellow

Argelander-Institut für Astronomie

LIMITATIONS IN RECENT BISPECTRUM ANALYSES

D'Amico+ 22

 $\sim 10 - 15\%$ improvement over power spectrum by including bispectrum with leading order model, potentially more with next-to-leading-order model

LIMITATIONS IN RECENT BISPECTRUM ANALYSES

 $0.08 h \,\mathrm{Mpc}^{-1}$ for leading order model

THE REDSHIFT SPACE MAPPING

$$s = x + v_{\parallel} \hat{n}$$

Why is it difficult to model redshift space distortions in perturbation theory?

THE REDSHIFT SPACE MAPPING

$$s = x + v_{\parallel} \hat{n}$$

Why is it difficult to model redshift space distortions in perturbation theory?

In correlation functions we are sensitive to velocity differences Δv_{\parallel}

THE REDSHIFT SPACE MAPPING

$$s = x + v_{\parallel} \hat{n}$$

Why is it difficult to model redshift space distortions in perturbation theory?

In correlation functions we are sensitive to velocity differences Δv_{\parallel}

Large-scale component cancels out in Δv_{\parallel}

Velocity differences are always sensitive to non-linearities!

THE PAIRWISE VELOCITY DISTRIBUTION

Scoccimarro 04 10-3 10-4 $\mathscr{P}(\Delta v_{\parallel}, r)$ 10-5 10-6 10-7 r=0.1 Mpc/h10-3 10^{-4} $\mathscr{P}(\Delta v_{\parallel}, \boldsymbol{r})$ 10-5 10-6 10-7 r=5 Mpc/h10-3 $\mathscr{P}(\Delta v_{\parallel}, r)$ 10-4 10-5 10-6 10-7 Þ r=200 Mpc/h -2000 0 2000 Δv_{\parallel} [km/s]

Redshift-space power spectrum

"Streaming model"

Fisher 95 Scoccimarro 04

Redshift-space power spectrum

Fisher 95 Scoccimarro 04

Modelling approaches:

Reid & White 11, Wang+ 14, Vlah+ 16

Fisher 95 Scoccimarro 04

 $\mu = k_{\parallel}/k$

Modelling approaches:

Reid & White 11, Wang+ 14, Vlah+ 16

In all recent Effective Field Theory (EFT) models the function $W(k_{\parallel}, r)$ is expanded perturbatively

$$W(k_{\parallel}, \mathbf{r}) \equiv \left\langle e^{-ik_{\parallel}\Delta v_{\parallel}(\mathbf{r})} \right\rangle \approx 1 + k_{\parallel}^2/2 \left\langle \Delta v_{\parallel}^2 \right\rangle + k_{\parallel}^4/8 \left\langle \Delta v_{\parallel}^2 \right\rangle^2 + \dots$$

velocity dispersion, highly sensitive to non-linearities

In all recent Effective Field Theory (EFT) models the function $W(k_{\parallel}, r)$ is expanded perturbatively

$$W(k_{\parallel}, \mathbf{r}) \equiv \left\langle e^{-ik_{\parallel} \Delta v_{\parallel}(\mathbf{r})} \right\rangle \approx 1 + k_{\parallel}^2 / 2 \left\langle \Delta v_{\parallel}^2 \right\rangle + k_{\parallel}^4 / 8 \left\langle \Delta v_{\parallel}^2 \right\rangle^2 + \dots$$

$$\mathbf{k} \qquad \mathbf{k} \qquad \mathbf{k}$$

Motivates the introduction of redshift space counterterms

$$P_{\rm ctr,s}(k,\mu) = c_2 k^2 \mu^2 P_{\rm lin}(k) + c_4 k^2 \mu^4 P_{\rm lin}(k) + c_{\rm nlo} k^4 \mu^4 P_{\rm lin}(k)$$

Perko+ 16, Desjacques+ 19, Ivanov+ 20, D'Amico+ 20

highly sensitive to non-linearities

We can also keep the velocity difference generating function non-perturbative!

 \rightarrow Ad-hoc assumptions take $W(k_{\parallel}, r)$ as **Gaussian** or **Lorentzian**, but one can motivate a form based on PT:

$$W(k_{\parallel}, \mathbf{r}) \equiv \left\langle e^{-ik_{\parallel} \Delta v_{\parallel}(\mathbf{r})} \right\rangle \approx \left\langle e^{-ik_{\parallel}} \left\langle e^{-ik_{\parallel} \Delta v_{\parallel}(\mathbf{r})} \right\rangle \right\rangle$$

 $\left(\Delta v_{\parallel}^{(1)} + \Delta v_{\parallel}^{(2)} + \dots\right)$

We can also keep the velocity difference generating function non-perturbative!

 \rightarrow Ad-hoc assumptions take $W(k_{\parallel}, r)$ as **Gaussian** or **Lorentzian**, but one can motivate a form based on PT:

$$W(k_{\parallel}, \boldsymbol{r}) \equiv \left\langle e^{-ik_{\parallel} \Delta v_{\parallel}(\boldsymbol{r})} \right\rangle \approx \left\langle e^{-ik_{\parallel} \left(\Delta v_{\parallel}^{(1)} + \Delta v_{\parallel}^{(2)} + \dots \right)} \right\rangle$$

$$(1)$$
Resumming quadratic
non-linearities,
ignoring skewness
$$\rightarrow \frac{1}{\sqrt{1 + k_{\parallel}^2 \sigma_{nl}^2(\boldsymbol{r})}} \exp\left(-\frac{k_{\parallel}^2 \sigma_{lin}^2(\boldsymbol{r})}{1 + k_{\parallel}^2 \sigma_{nl}^2(\boldsymbol{r})}\right)$$
Juszkiewicz+ 98, Scoccimarro 04, No

Scoccimarro (in prep)

Linear velocity dispersion

Velocity Difference Generator (**VDG**)

Non-linear, "virialised" velocity dispersion

We can also keep the velocity difference generating function non-perturbative!

 \rightarrow Ad-hoc assumptions take $W(k_{\parallel}, r)$ as **Gaussian** or **Lorentzian**, but one can motivate a form based on PT:

$$W(k_{\parallel}, \mathbf{r}) \equiv \left\langle e^{-ik_{\parallel} \Delta v_{\parallel}(\mathbf{r})} \right\rangle \approx \left\langle e^{-ik_{\parallel} \left\langle \Delta v_{\parallel}(\mathbf{r}) \right\rangle} \right\rangle \approx \left\langle e^{-ik_{\parallel} \left\langle \mathbf{r} \right\rangle} \right\rangle$$
Resumming quadratic non-linearities, ignoring skewness
$$\rightarrow \frac{1}{\sqrt{1 + k_{\parallel}^2 \left\langle \mathbf{r} \right\rangle}}$$
Juszkiewicz+ 98, Scoccimarro 04, Scoccimarro (in prep)
In the large-scale limit, the dispersions become constant
$$\sigma_{nl}^2(\mathbf{r}) \rightarrow \sigma_{vir}^2$$

Sánchez+ 16

TEST ENVIRONMENT: DATA & LIKELIHOOD

Minerva simulation suite:

- 300 realisations of volume $(1500 h^{-1} \text{Mpc})^3$ each
- Populated with HOD galaxies, matching **LOWZ** and **CMASS** galaxies at z = 0.3, 0.57

$$-\log \mathscr{L} = \frac{1}{2} \left(X - \mu \right) \cdot C_X^{-1}$$

Covariance matrices:

- Gaussian predictions using best-fit bias parameters
- Tune volume to Euclid-like redshift shell:

•
$$\Delta z = 0.2$$
 at $\overline{z} = 0.9$

- ► 15,000 deg^2
- $\blacktriangleright \bar{n} \approx 2 \times 10^{-3} \, (h \, \mathrm{Mpc^{-1}})^3$

Alex Eggemeier (AlfA, University of Bonn)

- Analysing the power spectrum multipoles for different wavenumber cutoffs k_{max}
- Varying three cosmological parameters (h, ω_c , A_s), in addition to 10 "nuisance" parameters
- Model predictions are obtained from
 COMET (a fast emulator of theory
 predictions) AE+ 22

CMASS

$$k_{\text{max}} = 0.2 h \,\text{Mpc}^{-1}$$
 (down to ~ 30 Mpc/h)

2 2 0

 γ_2

Alex Eggemeier (AlfA, University of Bonn)

2 7 0

 γ_2

- Analysing the power spectrum multipoles for different wavenumber cutoffs k_{max}
- Varying three cosmological parameters (h, ω_c, A_s), in addition to 10 "nuisance" parameters
- Model predictions are obtained from **COMET** (a fast emulator of theory predictions) AE+ 22

CMASS

$$k_{\text{max}} = 0.2 \, h \, \text{Mpc}^{-1}$$
 (down to ~ 30 Mpc/h)

Alex Eggemeier (AlfA, University of Bonn)

2 2 0

 γ_2

- Analysing the power spectrum multipoles for different wavenumber cutoffs k_{max}
- Varying three cosmological parameters (h, ω_c, A_s), in addition to 10 "nuisance" parameters
- Model predictions are obtained from **COMET** (a fast emulator of theory predictions) AE+ 22

CMASS $k_{\rm max} = 0.35 \, h \, {\rm Mpc^{-1}}$ (down to ~ 20 Mpc/h)

Alex Eggemeier (AlfA, University of Bonn)

LOWZ

Alex Eggemeier (AlfA, University of Bonn)

AE+ (in prep)

Alex Eggemeier (AlfA, University of Bonn)

LOWZ

Alex Eggemeier (AlfA, University of Bonn)

LOWZ

Alex Eggemeier (AlfA, University of Bonn)

LOWZ

- Gains in constraining power by unlocking information from smaller scales!
- No change in model complexity (number of parameters)

AE+ (in prep)

REDSHIFT SPACE COUNTERTERMS

Alex Eggemeier (AlfA, University of Bonn)

Non-zero & sample-dependent

- VDG damping function captures well non-linearities of the redshiftspace mapping
- Possibility to simplify model and reduce projection effects?

Consistent with zero

JOINT ANALYSIS

Analysing power spectrum multipoles together with bispectrum multipoles (monopole + quadrupole)

 Adopting leading order model of Ivanov+ 21 for the EFT bispectrum, **2** additional counterterm parameters

$$\rightarrow Z_{1,\text{ctr}} = c_{B,1} k^2 \mu^2 + c_{B,2} k^2 \mu^2$$

 b_2

 Analogue damping function for VDG bispectrum, no additional parameters

(in prep) AE+

JOINT ANALYSIS

Analysing power spectrum multipoles together with bispectrum multipoles (monopole + quadrupole)

 Adopting leading order model of Ivanov+ 21 for the EFT bispectrum, **2** additional counterterm parameters

$$\rightarrow Z_{1,\text{ctr}} = c_{B,1} k^2 \mu^2 + c_{B,2} k^2 \mu^2$$

 b_2

 Analogue damping function for VDG bispectrum, no additional parameters

AE+ (in prep)

GAINS OVER THE POWER SPECTRUM

GAINS OVER THE POWER SPECTRUM

TAKE AWAY

A (partially) non-perturbative treatment of the redshift-space mapping offers significant improvements in the modelling of two- and three-point statistics

- Tested across various different galaxy samples (caveat: only HOD)
- parameter space

Big **THANKS** to my collaborators:

• Gains in constraining power on Λ CDM parameters from extended k-range

• Possibility to alleviate projection effects due to reduction of counterterm

B. Camacho, M. Crocce, N. Lee, A. Pezzotta, C. Porciani, A. Sánchez, R. Scoccimarro, E. Sefusatti, A. Semenaite

POWER SPECTRUM COVARIANCE

Alex Eggemeier (AlfA, University of Bonn)

New Strategies for Extracting Cosmology from Galaxy Surveys @ Sesto, 2024

BISPECTRUM COVARIANCE

POWER SPECTRUM & BISPECTRUM METRICS

CMASS

Alex Eggemeier (AlfA, University of Bonn)

