Cosmology from galaxies at long distances

The "pen & paper" approach

Pierre Zhang (ETH Zürich)

3 July 2024

New Strategies for Extracting Cosmology from Galaxy Surveys - 2nd edition | Sesto Center for Astrophysics Riccardo Giacconi

 $\mathcal{P}(\Omega | \text{map}) = ?$

 Ω : (new) physics

 $-$ DESI 2024 $-$

 $\mathcal{P}(\Omega|\delta)=?$

 $\delta(\pmb{x}) = \frac{\rho(\pmb{x})}{\bar{\rho}}-1$

$$
\delta_\ell(\pmb{x}) = \text{FT}\left[\delta_\ell(\pmb{k}) = \delta(|\pmb{k}| < \Lambda_s^{-1})\right]
$$

$\frac{1}{2}$ $\delta_{\ell}(\boldsymbol{k}) \lesssim \mathcal{O}(1) \text{ for } k \lesssim \Lambda_s^{-1} \lesssim k_{\rm nl}$

 -19

$$
\delta_\ell(\pmb{x}) = \text{FT}\left[\delta_\ell(\pmb{k}) = \delta(|\pmb{k}| < \Lambda_s^{-1})\right]
$$

 $\delta_{\ell}(\boldsymbol{k}) \lesssim \mathcal{O}(1)$ for $k \lesssim \Lambda_s^{-1} \lesssim k_{\rm nl}$

 $\overline{}$ In this talk $\overline{}$ $\mathcal{P}(\Omega|\delta) \to \mathcal{P}(\Omega|\delta_{\ell}) = ?$

What galaxies at long distances can tell us?

EFT: a natural language to decipher the Universe

$-$ Plan $-$

Part 1 - The LSS as a *coarse-grained, effective* field

Part 2 - The *"Pen & Paper"* approach in action

Part 3 - Insights from galaxies at long distances *beyond 2pt*

— Effective Field Theory of Large-Scale Structure —

Baumann, Carrasco, Hertzberg, Nicolis, Pajer, Senatore, Zaldarriaga, ... 10-13

Looking from afar, we want to know fields describing matter, baryons, galaxies, etc., *e.g.*, δ , $\delta_{_B}$, $\delta_{_S}$, ν , ...

Ingredients

- Dark matter: *Continuity* and *Euler equations* (coarse-grained)
- Gravity: *Poisson equation* ∂2Φ ∼
- Symmetries: *Galilean invariance* $x \rightarrow x + n$, $v \rightarrow v + \partial_i n$

Weinberg 03, Kehagias, Riotto, Peloso, Pietroni, Creminelli, Gleyzes, Noreña, Simonović, Vernizzi 13

Receipe

- Solve dark matter equations perturbatively
	- $\delta = \delta_1 + \delta_2 + ...$
- For unknowns, write down all terms allowed by the symmetries with free Wilson coefficients
	- $\delta_g = b_1 \delta_1 + b_2 \delta_2 + ...$
- For UV-sensitive operation, add counterterms

review: Bernardeau, Colombi, Gaztanaga, Scoccimarro 01

$$
\begin{aligned}\n\left(\partial^2 \Phi = \frac{3}{2} \mathcal{H}^2 \Omega_m \delta\right) \\
\frac{\dot{\delta} + \frac{1}{a} \partial_i ((1 + \delta)v^i) = 0}{\dot{v}^i + Hv^i + \frac{1}{a} v^j \partial_j v^i + \frac{1}{a} \partial_i \Phi} = 0\n\end{aligned}
$$

Poisson equation

Energy conservation

Momentum conservation

$$
\rho(\mathbf{x}, a) = \bar{\rho}(a)(1 + \delta(\mathbf{x}, a))
$$

$$
v^{i}(\mathbf{x}, a)
$$

review: Bernardeau, Colombi, Gaztanaga, Scoccimarro 01

$$
\partial^2 \Phi = \frac{3}{2} \mathcal{H}^2 \Omega_m \delta
$$

$$
\dot{\delta} + \frac{1}{a} \partial_i ((1 + \delta)v^i) = 0
$$

$$
\dot{v}^i + Hv^i + \frac{1}{a} v^j \partial_j v^i + \frac{1}{a} \partial_i \Phi =
$$

 $\boldsymbol{0}$

$$
\langle \delta(\mathbf{k}, a) \delta(\mathbf{k}', a) \rangle = (2\pi)^3 \delta_D(\mathbf{k} + \mathbf{k}') P_{mm}(k, a)
$$

$$
P_{mm}(k,a) = a^2 P_{11}(k)
$$

review: Bernardeau, Colombi, Gaztanaga, Scoccimarro 01

PT contributions

$-$ Dark matter $-$

$$
\partial^2 \Phi = \frac{3}{2} \mathcal{H}^2 \Omega_m \delta
$$

$$
\dot{\delta} + \frac{1}{a} \partial_i ((1 + \delta) v^i) = 0
$$

$$
\dot{v}^i + Hv^i + \frac{1}{a} v^j \partial_j v^i + \frac{1}{a} \partial_i \Phi = 0
$$

$$
\delta(\boldsymbol{k})\equiv\delta_\ell(\boldsymbol{k})+\delta_s(\boldsymbol{k})
$$

$$
P_{mm}(k,a) = a^2 P_{11}(k) + a^4 P_{22-13}(k)
$$

$$
\delta_{\ell}(\mathbf{k}) = \begin{cases} \delta(\mathbf{k}) & \text{if } k < \Lambda^{-1} \sim k_{\text{NL}} \\ 0 & \text{otherwise} \end{cases}
$$

Baumann, Nicolis, Senatore, Zaldarriaga 10 Carrasco, Hertzberg, Senatore 12

$$
\partial^2 \Phi_{\ell} = \frac{3}{2} \mathcal{H}^2 \Omega_m \delta_{\ell}
$$
\n
$$
\dot{\delta}_{\ell} + \frac{1}{a} \partial_i ((1 + \delta_{\ell}) v_{\ell}^i) = 0
$$
\n
$$
\dot{v}_{\ell}^i + H v_{\ell}^i + \frac{1}{a} v^j \partial_j v_{\ell}^i + \frac{1}{a} \partial_i \Phi_{\ell} = \left(-\frac{1}{a} \partial_i \left(\frac{1}{\rho_{\ell}} \partial_j \tau^{ij} \right)_s \right)
$$
\nStress tensor
\nenclosing short-distance physics

for the long-distance fluid

$$
P_{mm}(k,a) = a^2 P_{11}(k) + a^4 P_{22-13}(k)
$$

$$
\delta_{\ell}(\mathbf{k}) = \begin{cases} \delta(\mathbf{k}) & \text{if } k < \Lambda^{-1} \sim k_{\text{NL}} \\ 0 & \text{otherwise} \end{cases}
$$

$-$ Dark matter $-$

Baumann, Nicolis, Senatore, Zaldarriaga 10
Carrasco, Hertzberg, Senatore 12

$$
\partial^2 \Phi_{\ell} = \frac{3}{2} \mathcal{H}^2 \Omega_m \delta_{\ell}
$$
\n
$$
\dot{\delta}_{\ell} + \frac{1}{a} \partial_i ((1 + \delta_{\ell}) v_{\ell}^i) = 0
$$
\n
$$
\dot{v}_{\ell}^i + H v_{\ell}^i + \frac{1}{a} v^j \partial_j v_{\ell}^i + \frac{1}{a} \partial_i \Phi_{\ell} = \left(-\frac{1}{a} \partial_i \left(\frac{1}{\rho_{\ell}} \partial_j \tau^{ij} \right)_s \right) \sim c_s^2(a) \frac{\partial^2}{k_{\text{NL}}^2} \delta_{\ell} + \dots
$$

$$
P_{mm}(k,a) = a^2 P_{11}(k) + a^4 P_{22-13}(k)
$$

- Dark matter -

Baumann, Nicolis, Senatore, Zaldarriaga 10 Carrasco, Hertzberg, Senatore 12

$$
\partial^2 \Phi_{\ell} = \frac{3}{2} \mathcal{H}^2 \Omega_m \delta_{\ell}
$$
\n
$$
\dot{\delta}_{\ell} + \frac{1}{a} \partial_i ((1 + \delta_{\ell}) v_{\ell}^i) = 0
$$
\n
$$
\dot{v}_{\ell}^i + H v_{\ell}^i + \frac{1}{a} v^j \partial_j v_{\ell}^i + \frac{1}{a} \partial_i \Phi_{\ell} = \left[-\frac{1}{a} \partial_i \left(\frac{1}{\rho_{\ell}} \partial_j \tau^{ij} \right)_s \right] \sim c_s^2(a) \frac{\partial^2}{k_{\text{NL}}^2} \delta_{\ell} + \dots
$$
\n
$$
P_{mm}(k, a) = a^2 P_{11}(k) + a^4 P_{22-13}(k) + c_s^2(a) \frac{k^2}{k_{\text{NL}}^2} P_{11}(k)
$$
\n
$$
P_{mm}(k, a) = a^2 P_{11}(k) + a^4 P_{22-13}(k) + c_s^2(a) \frac{k^2}{k_{\text{NL}}^2} P_{11}(k)
$$
\n
$$
P_{mm}(k, a) = a^2 P_{11}(k) + a^4 P_{22-13}(k) + c_s^2(a) \frac{k^2}{k_{\text{NL}}^2} P_{11}(k)
$$
\n
$$
P_{mm}(k, a) = \frac{a^2}{k^2} \sum_{k=1}^{N} a_k (k) P_{11}(k) + a_k (k) P_{12}(k) + a_k (k) P_{12}(k) + a_k (k) P_{13}(k) + a_k (k) P_{14}(k) + a_k (k) P_{15}(k) + a_k (k) P_{16}(k) + a_k (k) P_{17}(k) + a_k (k) P_{18}(k) + a_k (k) P_{19}(k) + a_k (k) P_{10}(k) + a_k (k) P_{10}(k) + a_k (k) P_{11}(k) + a_k (k) P_{11}(k) + a_k (k) P_{12}(k) + a_k (k) P_{10}(k) + a_k (k) P_{11}(k) + a_k (k) P_{12}(k) + a_k (k) P_{10}(k) + a_k (k) P_{11}(k) + a_k (k) P_{12}(k) + a_k (k)
$$

r, Zaldarriaga 13

— Galaxy bias expansion —

McDonald 06-09, Angulo, Assassi, Baumann, Fasiello, Fujita, Green, Mirbabayi, Schmidt, Senatore, Vlah, Zaldarriaga, ... 14-16

(Galilean inv.) fluctuations stochasticity $\delta_g(\mathbfit{x},t) = \int^t dt'~f\Big(\overbrace{\partial_i\partial_j\Phi(\mathbfit{x},t'),\partial_i v_j(\mathbfit{x},t')},\overbrace{\partial_i/k_\mathrm{M}},\overbrace{\epsilon_{ij}(\mathbfit{x},t')},\kappa_\star(t,t')\Big)$

(spatial) gradients

time responses

— Galaxy bias expansion —

McDonald 06-09, Angulo, Assassi, Baumann, Fasiello, Fujita, Green, Mirbabayi, Schmidt, Senatore, Vlah, Zaldarriaga, ... 14-16

(Galilean inv.) fluctuations
\n
$$
\delta_g(\boldsymbol{x},t) = \int^t dt' \ f\left(\partial_i \partial_j \Phi(\boldsymbol{x},t'), \partial_i v_j(\boldsymbol{x},t'), \partial_i / k_M, \epsilon_{ij}(\boldsymbol{x},t'), \kappa_{\star}(t,t')\right)
$$
\n(spatial) gradients
\ntime responses

Remarks

- Fluid expansion $\mathbf{x} \to \mathbf{x}_{\text{fl}} = \mathbf{x} + \int_{t}^{t'} \frac{dt''}{a(t'')} \mathbf{v}(\mathbf{x}_{\text{fl}}(\mathbf{x}, t, t'), t'')$
- Equivalent to *local-in-time* basis up to 4th order,

w/ D'Amico, Donath, Lewandowski, Senatore 22a

$$
\delta_g(\boldsymbol{x},t)=f\Big(\partial_i\partial_j\Phi(\boldsymbol{x},t),\partial_iv_j(\boldsymbol{x},t),\partial_i/k_\mathrm{M},\epsilon_{ij}(\boldsymbol{x},t),\kappa_\star(t)\Big)
$$

- $-$ … but not at $5th$ order!
- An equivalent formulation (up to renormalisation) is, Consider *local-in-time* expansion & advect with LPT displacements

Donath, Lewandowski, Senatore 23

Schmidt 21

— Galaxy bias expansion —

At the end of the day,

— Redshift space —

Matsubara 08, Lewandowski, Senatore, Zaldarriaga, … 14-16 w/ D'Amico, Donath, Lewandowski, Senatore 22a

- Comoving coordinates relation real space to redshift space: $\bm{x}\rightarrow\bm{x}+(\bm{v}_\mathcal{H}\cdot\hat{z})\hat{z}$ $\left(\boldsymbol{v}_{\mathcal{H}}\equiv\boldsymbol{v}/\mathcal{H}\right)$

$$
\delta \to \delta + \sum_{n=1} \frac{(-1)^n}{n!} \prod_{a=1}^n \partial_{i_a} \left((1+\negthickspace\widehat{\delta}) \prod_{b=1}^n v_\mathcal{H}^{i_b} \right) \hat{z}^{i_a} \hat{z}^{i_b}
$$

- Counterterms are added such that products of local operators have the correct properties under Galilean transformations …
- *e.g.*, $\delta v^i_{\mathcal{H}} \supset c_{\text{rs}} \partial_i \delta_1 / k_{\text{rs}}^2$

$$
\begin{aligned}\n\left[v^{i}|_{R} \to [v^{i}]_{R} + \chi^{i} , \\
[v^{i}v^{j}]_{R} \to [v^{i}v^{j}]_{R} + [v^{i}]_{R}\chi^{j} + [v^{j}]_{R}\chi^{i} + \chi^{i}\chi^{j} \\
[\delta_{h}v^{i}]_{R} \to [\delta_{h}v^{i}]_{R} + [\delta_{h}]_{R}\chi^{i}\n\end{aligned}\right]
$$

$$
\delta_g(\mathbf{x},\tau) = F\Big[\overline{\partial_i\partial_j\phi(\mathbf{x},\tau)},\partial_i v_j(\mathbf{x},\tau),\partial_i\partial_j/k_\mathrm{M}^2,\epsilon_{ij}(\mathbf{x},\tau),\overline{c_n(\tau)}\Big]
$$

$$
\delta_g \supseteq c_1 \overline{\partial^2 \phi}
$$

$$
\delta_g\supset\overline{c_2\partial^2\phi\partial^2\phi}
$$

$$
\delta_g(\mathbf{x},\tau) = F\Big[\overline{\partial_i\partial_j\phi(\mathbf{x},\tau)},\partial_i v_j(\mathbf{x},\tau),\partial_i\partial_j/k_{\rm M}^2,\epsilon_{ij}(\mathbf{x},\tau),\overline{c_n(\tau)}\Big]
$$

$$
\delta_g\supset\boxed{c_1\partial^2\phi}\equiv b_1\delta
$$

$$
\delta_g\supset\boxed{c_2\partial^2\phi\partial^2\phi}\equiv b_2\delta^2
$$

$$
\delta_g(\mathbf{x}, \tau) = F\left(\partial_i \partial_j \phi(\mathbf{x}, \tau), \partial_i v_j(\mathbf{x}, \tau), \partial_i \partial_j / k_M^2, \epsilon_{ij}(\mathbf{x}, \tau), \underline{c_n(\tau)}\right)
$$

$$
\delta_g \supseteq \boxed{c_1 \partial^2 \phi} \equiv b_1 \delta \supseteq b_1(\delta^{(1)} + \delta^{(2)} + \delta^{(3)}) + c_s^2 \frac{\partial^2}{k_{\text{NL}}^2} \delta^{(1)}
$$

$$
\delta_g\supset\!\stackrel{\\[1.2mm]{C_2}}\!\!\partial^2\phi\!\stackrel{\\[1.2mm]{\partial^2}\phi}\equiv b_2\delta^2
$$

$$
\delta_g(\mathbf{x}, \tau) = F\left(\partial_i \partial_j \phi(\mathbf{x}, \tau), \partial_i v_j(\mathbf{x}, \tau), \partial_i \partial_j / k_M^2, \epsilon_{ij}(\mathbf{x}, \tau), \underbrace{c_n(\tau)}_{\mathcal{C}_g} \right)
$$
\n
$$
\delta_g \supseteq \underbrace{c_1 \partial^2 \phi}_{\mathcal{C}_g} \equiv b_1 \delta \supset b_1(\delta^{(1)} + \delta^{(2)} + \delta^{(3)}) + c_s^2 \frac{\partial^2}{k_{\text{NL}}^2} \delta^{(1)}
$$
\n
$$
\underbrace{\left(\delta_g \delta_g\right) \supset b_1^2(P_{11}(k) + \langle \delta^{(2)} \delta^{(2)} \rangle + 2 \langle \delta^{(1)} \delta^{(3)} \rangle) + 2b_1 c_s^2 \frac{k^2}{k_{\text{NL}}^2} P_{11}(k)}
$$

$$
\delta_g\supset\!\stackrel{\\[1.2mm]{0.2}}\partial^2\phi\!\stackrel{\\[1.2mm]{0.2}}\partial^2\phi\!\equiv b_2\delta^2
$$

$$
\delta_g(\mathbf{x}, \tau) = F\left(\partial_i \partial_j \phi(\mathbf{x}, \tau), \partial_i v_j(\mathbf{x}, \tau), \partial_i \partial_j / k_M^2, \epsilon_{ij}(\mathbf{x}, \tau), \underbrace{c_n(\tau)}_{\mathcal{O}_g} \right)
$$
\n
$$
\delta_g \supseteq \underbrace{c_1 \partial^2 \phi} \equiv b_1 \delta \supset b_1(\delta^{(1)} + \delta^{(2)} + \delta^{(3)}) + c_s^2 \frac{\partial^2}{k_{\text{NL}}^2} \delta^{(1)}
$$
\n
$$
\underbrace{\left(\delta_g \delta_g\right) \supset b_1^2 \left(P_{11}(k) + \langle \delta^{(2)} \delta^{(2)} \rangle + 2 \langle \delta^{(1)} \delta^{(3)} \rangle\right) + 2b_1 c_s^2 \frac{k^2}{k_{\text{NL}}^2} P_{11}(k)}
$$

$$
\delta_g \supset [c_2 \partial^2 \phi \partial^2 \phi] \equiv b_2 \delta^2 \supset b_2 (\delta^2)^{(2)}
$$

$$
\delta_g(\mathbf{x}, \tau) = F\left(\partial_i \partial_j \phi(\mathbf{x}, \tau), \partial_i v_j(\mathbf{x}, \tau), \partial_i \partial_j / k_M^2, \epsilon_{ij}(\mathbf{x}, \tau), \underbrace{c_n(\tau)}_{\mathbf{0}, \sigma} \right)
$$
\n
$$
\delta_g \supseteq \underbrace{c_1 \partial^2 \phi}_{\mathbf{0}, \sigma} \equiv b_1 \delta \supset b_1 (\delta^{(1)} + \delta^{(2)} + \delta^{(3)}) + c_s^2 \frac{\partial^2}{k_{\text{NL}}^2} \delta^{(1)}
$$
\n
$$
\underbrace{\left(\delta_g \delta_g\right) \supset b_1^2 \left(P_{11}(k) + \langle \delta^{(2)} \delta^{(2)} \rangle + 2 \langle \delta^{(1)} \delta^{(3)} \rangle\right) + 2b_1 c_s^2 \frac{k^2}{k_{\text{NL}}^2} P_{11}(k)}
$$

$$
\delta_g \supset c_2 \partial^2 \phi \partial^2 \phi \equiv b_2 \delta^2 \supset b_2 (\delta^2)^{(2)} \over \left\langle \delta_g \delta_g \right\rangle \supset 2b_1 b_2 \left\langle \delta^{(2)} \delta^2 \right\rangle + b_2^2 \left\langle \delta^2 \delta^2 \right\rangle \right)
$$

Part 1 - The LSS as a *coarse-grained, effective* field

Part 2 - The *"Pen & Paper"* approach in action *One comment. One technical point. Some validations. One example. Part 3 -* Insights from galaxies at long distances *beyond 2pt*

- EFT & Galaxy Survey —
	- Where are we?

The Scale cut

— EFT scale cut —

w/ D'Amico, Senatore, Nishimichi 21 w/ D'Amico Senatore, Zhao, Cai 21 w/ Simon & Poulin 22

● What error we make when truncating the EFT expansion?

Theory error at 1-loop (NLO) = 2-loop (NNLO)

$$
P_{2L}^{\mu=0}(k) \sim c_e \frac{k^2}{k_M^2} P_{1L}^{\mu=0}(k)
$$

\n
$$
P_{2L}(k) \sim \frac{1}{4} b_1 (c_{r,4}b_1 + c_{r,6}\mu^2) \mu^4 \frac{k^4}{k_R^4} P_{11}(k)
$$

— EFT scale cut —

 0.20

 $- - 0.20$ NNLO

w/ D'Amico, Senatore, Nishimichi 21 w/ D'Amico Senatore, Zhao, Cai 21 w/ Simon & Poulin 22

1. Self-determination of scale cut *from measuring shift upon adding NNLO*

2. Automatic calibration of governing scales *such that* $|c_{NTO}| \sim |c_{NNIO}| \sim O(1)$

 $k_{\rm M}^{\rm BOSS} = 0.7h\,{\rm Mpc}^{-1}$, $k_{\rm R}^{\rm BOSS} = 0.35h\,{\rm Mpc}^{-1}$, $k_{\rm M}^{\rm eBOSS} = 0.7h\,{\rm Mpc}^{-1}$, $k_{\rm B}^{\rm eBOSS} = 0.25h\,{\rm Mpc}^{-1}$. *Disclaimer: Most analyses in this talk are setting wb to BBN preferred value*

EFT pipelines

Some validations

➢ PyBird: *<https://github.com/pierrexyz/pybird>* w/ D'Amico & Senatore 20

Also: Velocileptors, CLASS-PT, PBJ, FOLPS, CLASS-OneLoop, …

— Tests against simulations — *For BOSS 2pt @1-loop*

— Lettered challenge w/ D'Amico, Gleyzes, Kokron, Markovic, Senatore, $L_{\text{box}} \sim (2.5 \text{ Gpc}/h)^3$ Beutler, Gil-Marin 19 w/ Colas, D'Amico, Senatore, Beutler 19 $V_{tot} \sim 6 V_{BOSS}$ *In real space* w/ D'Amico, Senatore, Zhao, Cai 21 ABFG \blacksquare D 0.1 $\Delta\Omega_m/\Omega_m$ -0.1 0.02 $\xi = 0.00$ -0.04 Δ In10¹⁰A_s/In10¹⁰A_s 0.15 0.10 0.05 0.00 -0.05 0.1 $\Delta n_S/n_S$ 0.0 -0.1 0.1 $\overline{0.1}$ -0.1 0.0 -0.04 0.00 0.0 -0.1 0.0 0.1 Δ ln10¹⁰A_s/ln10¹⁰A_s $\Delta\Omega_m/\Omega_m$ $\Delta h/h$ $\Delta n_s/n_s$

- Pipeline comparison -

For BOSS 2pt @1-loop

 $-$ Consistency PS vs. $CF-$

w/ D'Amico, Senatore, Cheng, Cai 21

— Consistency of BOSS EFT analyses — PyBird vs. CLASS-PT

w/ Simon, Poulin, Smith 22

For other comparisons, see also [PBJ] Carrilho, Morettia, Pourtsidou 22 [CLASS-OneLoop] Linde, Moradinezhad Dizgah, Radermacher, Casas, Lesgourgues 24

— Pipeline comparison — *For LSS-S4 2pt @1-loop*

— Euclid collaboration — PyBird vs. PBJ vs. MG-Copter (vs. simulations)

— DESI collaboration — Bose *et al.* 24 Maus *et al.* 24PyBird vs. Velocileptors vs. FOLPS (vs. Abacus simulations.)

Part 1 - The LSS as a *coarse-grained, effective* field

Part 2 - The *"Pen & Paper"* approach in action

Part 3 - Insights from galaxies at long distances *beyond 2pt*

BOSS 2+3pt @ 1-loop

[theory] w/ D'Amico, Donath, Lewandowski, Senatore 22a [code] Anastasiou, Bragança, Senatore, Zheng 22 [analysis] w/ D'Amico, Donath, Lewandowski, Senatore 22b

Galaxies in redshift space -

 $2+3pt\odot1-loop$

w/ D'Amico, Donath, Lewandowski, Senatore 22a

Galaxies in redshift space - $\overline{}$

 $2+3pt$ @1-loop

w/D'Amico, Donath, Lewandowski, Senatore 22a

$$
P_{1\text{-loop tot.}}^{r,h} = \boxed{P_{11}^{r,h}} + \boxed{P_{13}^{r,h}} + P_{13}^{r,h,ct} + \boxed{P_{22}^{r,h}} + P_{22}^{r,h,\epsilon}
$$
\n
$$
B_{1\text{-loop tot.}}^{r,h} = \boxed{B_{211}^{r,h}} + \boxed{B_{321}^{r,h,(II),ct} + B_{321}^{r,h,(II),ct} + \boxed{B_{411}^{r,h}} + B_{411}^{r,h,ct}}
$$
\n
$$
+ \boxed{B_{222}^{r,h}} + B_{222}^{r,h,\epsilon} + \boxed{B_{321}^{r,h,\epsilon}}
$$
\n
$$
P_{11}^{r,h}[b_1], \quad P_{13}^{r,h}[b_1, b_3, b_8], \quad P_{22}^{r,h}[b_1, b_2, b_5],
$$
\n
$$
B_{211}^{r,h}[b_1, b_2, b_5], \quad B_{321}^{r,h,(II)}[b_1, b_2, b_3, b_5, b_6], \quad B_{411}^{r,h}[b_1, \ldots, b_{11}]
$$
\n
$$
B_{222}^{r,h}[b_1, b_2, b_5], \quad B_{321}^{r,h,(I)}[b_1, b_2, b_3, b_5, b_6, b_8, b_{10}]
$$

— Galaxies in redshift space — *2+3pt @1-loop*

w/ D'Amico, Donath, Lewandowski, Senatore 22a

$$
P_{1\text{-loop tot.}}^{r,h} = \boxed{P_{11}^{r,h}} + \boxed{P_{13}^{r,h} + P_{13}^{r,h,d}} + \boxed{P_{22}^{r,h}} + \boxed{P_{22}^{r,h}} + \boxed{P_{22}^{r,h} + P_{22}^{r,h,c}}
$$
\n
$$
P_{11}^{r,h}[\mathbf{b}_1], \quad P_{13}^{r,h}[\mathbf{b}_1, \mathbf{b}_3, \mathbf{b}_8], \quad P_{22}^{r,h}[\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_5],
$$
\n
$$
P_{211}^{r,h}[\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_5], \quad P_{22}^{r,h}[\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_5], \quad P_{311}^{r,h}[\mathbf{b}_1, \ldots, \mathbf{b}_1]
$$
\n
$$
P_{222}^{r,h}[\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_5], \quad P_{321}^{r,h,(II)}[\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_5, \mathbf{b}_6], \quad P_{411}^{r,h}[\mathbf{b}_1, \ldots, \mathbf{b}_{11}]
$$
\n
$$
P_{222}^{r,h}[\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_5], \quad P_{321}^{r,h,(II)}[\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_5, \mathbf{b}_6, \mathbf{b}_8, \mathbf{b}_{10}]
$$

with insertions of *order in fields* **1 st response 2nd response 1 st stochastic 1 st & 2nd stochastic**

➢ Counterterm contributions

 $\left[P_{13}^{r,h,ct}[b_1,c_{h,1},c_{\pi,1},c_{\pi v,1},c_{\pi v,3}]\right],$ $\left[P_{22}^{r,h,\epsilon}[c_1^{\text{St}},c_2^{\text{St}},c_3^{\text{St}}]\right]$ $\overline{B_{321}^{r,h,(II),ct}[b_1,b_2,b_5,c_{h,1},c_{\pi,1},c_{\pi v,1},c_{\pi v,3}]}\,,$ $B_{321}^{r,h,\epsilon,(I)}[b_1, c_1^{\text{St}}, c_2^{\text{St}}, \{c_i^{\text{St}}\}_{i=4,...,13}]\,$ $^{(22)}$, $c_2^{(222)}$, $\left[B_{222}^{r,h,\epsilon} \left[c_1^{(222)}\right], \right.$ $B_{411}^{r,h,ct}[b_1,\{c_{h,i}\}_{i=1,...,5},c_{\pi,1},c_{\pi,5},\{c_{\pi v,j}\}_{j=1,...,7}]$

— Galaxies in redshift space — *2+3pt @1-loop*

- 11 bias / 14 response / 16 stochastic parameters
- All counterterms neccessary $\&$ sufficient for 2+3pt renormalisation $@1$ loop

w/ D'Amico, Donath, Lewandowski, Senatore 22a

 $\left[B^{r,h,\epsilon,(I)}_{321}[b_1,c_1^{\text{St}},c_2^{\text{St}},\{c_i^{\text{St}}\}_{i=4,...,13}]\right],$

 $[B^{r,h,\epsilon}_{222}[c_1^{(222)},$

 $\left[P_{22}^{r,h,\epsilon}[c_{1}^{\mathrm{St}},c_{2}^{\mathrm{St}},c_{3}^{\mathrm{St}}]\right]$

 $P^{r,h}_{1\text{-loop tot.}} = P^{r,h}_{11}$ $P_{13}^{r,h,ct}$ $\sqrt{P_{13}^{r,h}}$ $P_{22}^{r,h}$ $^{+}$ $\left(\!\left|\!B_{321}^{r,h,(II)}\!\right|\!\right)$ $B_{321}^{r,h,(II),ct}$ $= |B_{211}^{r,h}| +$ $B^{r,h}_{1\text{-loop tot.}}$ \vdash $^{+}$ $\left(\overline{B^{r,h,(I)}_{321}}\right)$ $+ B_{222}^{r,h,\epsilon}$ $B_{222}^{r,h}$ $B_{321}^{\prime,\pi,(I)}$ ➢ PT contributions $P_{11}^{r,h}[b_1], \quad P_{13}^{r,h}[b_1, b_3, b_8], \quad P_{22}^{r,h}[b_1, b_2, b_5],$ $B_{211}^{r,h}[b_1, b_2, b_5], \quad B_{321}^{r,h,(II)}[b_1, b_2, b_3, b_5, b_8], \quad B_{411}^{r,h}[b_1, \ldots, b_{11}],$ $\left[B^{r,h}_{222}[b_1,b_2,b_5]\right],\quad B^{r,h,(I)}_{321}[b_1,b_2,b_3,b_5,b_6,b_8,b_{10}]$,

with insertions of *order in fields*

1

1 st response 2nd response 1 st stochastic 2nd stochastic

➢ Counterterm contributions

 $\left[B^{r,h,(II),ct}_{321}[b_1,b_2,b_5,c_{h,1},c_{\pi,1},c_{\pi v,1},c_{\pi v,3}]\right],$

 $\overline{B_{411}^{r,h,ct}[b_{1},\{c_{h,i}\}_{i=1,...,5},c_{\pi,1},c_{\pi,5},\{c_{\pi v,j}\}_{j=1,...,7}]},$

 $\left[P_{13}^{r,h,ct}[b_1,c_{h,1},c_{\pi,1},c_{\pi v,1},c_{\pi v,3}]\right],$

— Tests against simulations — *BOSS 2+3pt @1-loop*

w/ D'Amico, Donath, Lewandowski, Senatore 22b

see also Philcox, Ivanov, Cabass, Simonovic, Zaldarriaga, Nishimichi 22

Best-fit — $P_{\ell}(k) \mid k \in [0.01, 0.23]$ $BOSS 2+3pt \text{ @ } 1-loop$

— ΛCDM — *BOSS 2+3pt @1-loop*

 1.0

See also [tree-level 3pt] Ivanov, Philcox, Cabass, Nishimichi, Simonovic,Zaldarriaga 23

— *w*CDM — *BOSS 2+3pt @1-loop*

w/ Spaar 23

base = Planck + ext-BAO + PanPlus

— A (not so) new strategy for extracting cosmology from galaxy surveys — *— The "Pen & Paper" approach —*

- *- "Cheap"*
	- *Well-defined, principle-based* framework for predicting galaxy correlators at large scales
	- *Flexible* exploration: for modification at background / linear level only, it is *Plug & Play*
- *- "Little margin for mistakes"*
	- *Parametric control* over theory error
	- Assumptions are as *general* as possible: We work only with Equivalence Principle!
- *- "Green"*
	- Likelihood is *analytic* (vs. simulation / ML based inference)
	- Iterations (over codes, models, etc.) are cheap
- *- "Historical"*
	- Observational systematics, at least at the 2pt level, are well studied
- *- "Benchmark"*
	- *- NO reason to NOT do it*
	- *-* Indeed now *standard* in DESI / Euclid

— Open questions —

There are limitations…

- Mildly nonlinear scales only. What to do with the small scales? SBI? Talks Chang?
	-

Many parameters to marginalise over our ignorance. Prior-informed analysis?

Beyond 2pt, *mainly a data analysis frontier*

- Need better estimation of covariance for 3pt
- No estimators beyond 3pt
- Systematics are not well understood
- Forward-model-based Inference is promising Talks Beatriz & Ivana?

— Last comment —

- I have the computer. Why not do full *Field-Level Inference*?

— Last comment —

- I have the computer. Why not do full *Field-Level Inference*?

