Results from DESI data using BAO (and RSD)

Héctor Gil-Marín - Institut de Ciències del Cosmos (U. Barcelona)

New Strategies for Extracting Cosmology from Galaxy Surveys (Sexten) 2nd July 2024

On behalf of the DESI Collaboration

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

U.S. Department of Energy Office of Science

Thanks to our sponsors and 72 Participating Institutions!

U.S. Department of Energy Office of Science

The Dark Energy Spectroscopic Instrument \bullet Galaxies, quasars and Ly- α The key science targets: the BAO and RSD ✦ Blind analysis ♦ BAO measurements DESI DR1 cosmology

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

Outline

A brief history of galaxy redshift surveys

U.S. Department of Energy Office of Science

Courtesy of D. Schlegel

A brief history of galaxy redshift surveys

U.S. Department of Energy Office of Science

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

Courtesy of D. Schlegel

A brief history of galaxy redshift surveys

U.S. Department of Energy Office of Science

U.S. Department of Energy Office of Science

SDSS (BOSS+eBOSS)

DESI DR1

A brief history of galaxy redshift surveys

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

U.S. Department of Energy Office of Science

SDSS (BOSS+eBOSS)

DESI DR1

A brief history of galaxy redshift surveys

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

The Dark Energy Spectroscopic Instrument

U.S. Department of Energy Office of Science

Located at the Mayal 4-m Telescope @ Kitt Peak (AZ)

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

The Dark Energy Spectroscopic Instrument

U.S. Department of Energy Office of Science

Located at the Mayal 4-m Telescope @ Kitt Peak (AZ)

- 10 fiber cable bundles.
- 3.2 deg. field of view optics
- 10 spectrographs

Readout & Control

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

The Dark Energy Spectroscopic Instrument

U.S. Department of Energy Office of Science

The Dark Energy Spectroscopic Instrument

U.S. Department of Energy Office of Science

U.S. Department of Energy Office of Science

10 Multi-Object Spectrographs:

- 360 980 nm range over 3 channels
- Resolution: 2000 (blue) 5500 (NIR)
- 500 fibers per spectrograph
- 4kx4k CCDs, 60s readout

Stable PSF

better than 1 % over many days

Low Read out noise

~ 3 e-

Throughput of optical chain is excellent

~40% at 700 nm (total)

The Dark Energy Spectroscopic Instrument

U.S. Department of Energy Office of Science

DESI starts with an image Legacy Surveys (public surveys; 2/3 from DECam)

The Dark Energy Spectroscopic Instrument

U.S. Department of Energy Office of Science

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

The Dark Energy Spectroscopic Instrument

U.S. Department of Energy Office of Science

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

The Dark Energy Spectroscopic Instrument

U.S. Department of Energy Offi

The Dark Energy Spectroscopic Instrument

U.S. Department of Energy Office of Science

DESI targets for DR1

9	ų — (s				
Tracer	redshift range	$N_{ m tracer}$	$z_{ m eff}$	$P_0(k=0.14)$	$V_{\rm eff}~({ m Gpc}^3)$
BGS	0.1 - 0.4	$300,\!017$	0.30	$\sim 9.2 \times 10^3$	1.7
LRG1	0.4 - 0.6	$506,\!905$	0.51	$\sim 8.9 imes 10^3$	2.6
LRG2	0.6 - 0.8	$771,\!875$	0.71	$\sim 8.9 imes 10^3$	4.0
LRG3	0.8 - 1.1	$859,\!824$	0.92	$\sim 8.4 imes 10^3$	5.0
ELG1	0.8 - 1.1	$1,\!016,\!340$	0.95	$\sim 2.6 imes 10^3$	2.0
LRG3+ELG1	0.8 - 1.1	$1,\!876,\!164$	0.93	$\sim 5.9 imes 10^3$	6.5
ELG2	1.1 - 1.6	$1,\!415,\!687$	1.32	$\sim 2.9 imes 10^3$	2.7
QSO	0.8-2.1	$856,\!652$	1.49	$\sim 5.0 imes 10^3$	1.5
Ly-a.	1.77 <z< td=""><td>709,565</td><td>2.33</td><td></td><td></td></z<>	709,565	2.33		

Lya

0.6 < z < 1.6

0.4 < z < 1.0

13.5 million 0.0 < z < 0.4

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

U.S. Department of Energy Office of Science

Not just the size+quality of the data, but the size+quality of the survey Exposure time is dynamically modified to be <u>constant in depth</u>, not exposure time

The Dark Energy Spectroscopic Instrument

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

The Dark Energy Spectroscopic Instrument

U.S. Department of Energy Office of Science

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

The Dark Energy Spectroscopic Instrument

U.S. Department of Energy Office of Science

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

The BAO as a standard ruler

U.S. Department of Energy Office of Science

Distances in cosmology are hard. We need calibrators!

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

The BAO as a standard ruler

U.S. Department of Energy Office of Science

The BAO as a standard ruler

U.S. Department of Energy Office of Science

Spectroscopic surveys: angles and redshifts

- The redshift survey catalogues deliver: angles and redshifts for each galaxy
- Redshifts are converted to comoving distances assuming a (reference) cosmological model and assuming velocities are due to Hubble flow $\int^{z} c dz'$

$$r(z) = \int_0^\infty \frac{c \, u \, z}{H(z', \Omega)}$$

Produce a 3D map we use to extract information

We are going to need rulers to calibrate our measurements!

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

The BAO as a standard ruler

U.S. Department of Energy Office of Science

The arbitrary choice of reference cosmology distorts all the measured angular and radial scales.

The distortion is different in the line-of-sight direction and in the transverse direction. Introduces an anisotropy if the reference or fiducial cosmology differs from the actual cosmology: Alcock-Paczynski effect

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

The BAO as a standard ruler

U.S. Department of Energy Office of Science

The arbitrary choice of reference cosmology distorts all the measured angular and radial scales.

epoch: r_d

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

In particular, it's true for the BAO scale: the sound horizon scale at drag

The BAO as a standard ruler

U.S. Department of Energy Office of Science

The arbitrary choice of reference cosmology distorts all the measured angular and radial scales.

The BAO as a standard ruler

U.S. Department of Energy Office of Science

For aficionados

$$[\alpha_{\parallel}\alpha_{\perp}^2]^{1/3} \equiv \alpha_{\rm iso}$$

The along and across LOS BAO distortions can be reparametrized in

The BAO as a standard ruler

U.S. Department of Energy Office of Science

Exploiting BAO-only at different redshifts...

Uncallibrated BAO (r_d unknown) $D_V(z_1)/D_V(z_2) & D_M(z_1)/D_H(z_1)$ Expansion history $E(z) \longrightarrow \text{eg. } \Omega_m$ in LCDM H_0 in units of $r_d \longrightarrow H_0 r_d$ Callibrated BAO (r_d known)

If r_d is given by external datasets $\longrightarrow H_0$

U.S. Department of Energy Office of Science

Nonlinear evolution blurs and shrinks the BAO peak in the galaxy distribution...

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

The BAO as a standard ruler

The BAO as a standard ruler

U.S. Department of Energy Office of Science

Reconstructing the field through Zeldovich displacements undo the non-linear shift

reconstruction

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

Eisenstein et al 2008, Padmanabhan et al 2012

The BAO as a standard ruler

U.S. Department of Energy Office of Science

We can improve both precision and accuracy

4	0)
L	C	D

The RSD as a gravity probe

U.S. Department of Energy Office of Science

 \bullet to peculiar velocities (Kaiser 1987)

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

RSD: Enhancement / reduction of the clustering along the line-of-sight (LOS) direction due

$$\hat{I}_{\perp} + \hat{x}_{\perp} V_{\perp}$$

$$\hat{I}_{\perp} = \Omega_m (z)^{\gamma}$$

logarithmic growth of structure

$$z_{obs} = z_{true} \oplus z_{pec} \equiv \left[(1 + z_{true}) \times (1 + z_{pec}) \right]$$

1. Hubble flow

2. Coherent with growth of structure

The RSD as a gravity probe

U.S. Department of Energy Office of Science

$$P_{g}^{(s)}(k,\mu) = \begin{bmatrix} b + f\mu^{2} \end{bmatrix}^{2} P_{m}(k)$$

$$P^{(s)}(k,\mu) = \begin{bmatrix} P^{(0)}(k)L_{0}(\mu) \\ monopole \\$$

U.S. Department of Energy Office of Science

The RSD as a gravity probe

- Which information is extracted from P(k)?
 - $D_{H}(z)/r_{s}, \quad D_{M}(z)/r_{s}, \quad f\sigma_{s8}(z)$
 - Alcock-Paczynski & isotropic dilation: background
 - Redshift Space Distortions: perturbations

- Is there more relevant information?
- New Strategies for Extracting Cosmology from Galaxy Surveys H. Gil-Marín (ICCUB)

ShapeFit & Full Modelling

U.S. Department of Energy Office of Science

DARK ENERGY INSTRUMENT

U.S. Department of Energy Office of Science

Compression is not lossless

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

U.S. Department of Energy Office of Science

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

ShapeFit & Full Modelling

We would like to promote the traditional BAO+RSD to the FM constraining power

ShapeFit & Full Modelling

U.S. Department of Energy Office of Science

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

We would like to promote the traditional BAO+RSD to the FM constraining power

U.S. Department of Energy Office of Science

Modelling transfer function dependence: ShapeFit

Compressed Variables

Standard BAO analysis

 $D_H(z)/r_s$

 $f(z) \cdot \sigma_{s8}(z)$

 $D_M(z)/r_s$ Late-time quantities (in units of r_s)

Standard RSD analysis

╋

+

ShapeFit analysis

m(z)

early-time quantity

Late-time quantities

 $\{D_M(z)/r_{\rm s}, D_H(z)/r_{\rm s}, f\sigma_{\rm s8}(z), m(z)\}$

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

ShapeFit & Full Modelling

Blinding DESI data

U.S. Department of Energy Office of Science

What is new about DESI data?

Is the largest redshift catalogue, both in terms of volume and objects

Blinding DESI data

U.S. Department of Energy Office of Science

What is new about DESI data?

- Is the largest redshift catalogue, both in terms of volume and objects.
- This is the first time that redshift survey data is analyzed in a catalogue-based blinded
 - Allow us to mitigate confirmation bias!

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

Blinding Process - - - - - - - - - - - -

Blinding DESI data

U.S. Department of Energy Office of Science

(ra, dec, z) - $\longrightarrow (X, Y, Z)$

fiducial cosmology

+ change to peculiar velocity contributions to redshift to blind growth rate

+ weights-based blinding for primordial non-Gaussianity $f_{\rm NL}$

3. Imprint f_{n1} signature in P(k)through galaxy weights

Blinding DESI data

U.S. Department of Energy Office of Science

The BAO measurements

U.S. Department of Energy Office of Science

Systematic error quantification

- Observational effects (imaging, fibre assignment) Accuracy of reconstruction algorithm(s)
- Covariance matrix
- Theory modelling
- Choice of fiducial cosmology
- Impact of galaxy-halo connection (HOD)

The BAO measurements

U.S. Department of Energy Office of Science

Systematic error quantification

- Observational effects (imaging, fibre assignment)
- Accuracy of reconstruction algorithm(s)
- Covariance matrix
- Theory modelling
- Choice of fiducial cosmology
- Impact of galaxy-halo connection (HOD)

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

no BAO error detected

	Tracer	$\sigma_{ m BGS}$	$\sigma_{ t LRGs, ELGs}$		
Space	Source	$lpha_{ m iso}~(\%)$	$lpha_{ m iso}~(\%)$	$lpha_{ m AP}~(\%)$	6
$\xi(r)$	Theory (Table 7)	0.1	0.1	0.2	
$\xi(r)$	HOD (Table 8)	0.2	0.2	0.2	
$\xi(r)$	Fiducial (Table 11)	0.1	0.1	0.1	
$\xi(r)$	Total	0.245	0.245	0.3	
P(k)	Theory (Table 7)	0.1	0.1	0.2	
P(k)	HOD (Table 8)	0.2	0.1	0.1	
P(k)	Fiducial (Table 11)	0.1	0.1	0.1	
P(k)	Total	0.245	0.18	0.245	

The BAO measurements

U.S. Department of Energy Office of Science

Systematic error quantification

The BAO measurements

U.S. Department of Energy Office of Science

Configuration Space

The BAO measurements

U.S. Department of Energy Office of Science

Aggregate distance precision: 0.52%

LRG1: 6.4σ LRG2: 6.8σ LRG3: 8.7σ LRG3+ELG1: 9.1σ ELG1: 3.3σ ELG2: 7.0σ

All SDSS galaxy BAO (20 years): 0.64%

DESI DR1 ~ BOSS DR12 + eBOSS DR16

The BAO measurements

U.S. Department of Energy Office of Science

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

The BAO measurements

U.S. Department of Energy Office of Science

U.S. Department of Energy Office of Science

How this compares to the previous BOSS & eBOSS?

The BAO measurements

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

U.S. Department of Energy Office of Science

How this compares to the previous BOSS & eBOSS?

Largest differences on $|D_M/r_d$ at z = 0.71, $\simeq 2.5\sigma$

DESI - SDSS 20% correlated

Statistical fluke? DR3 will tell

The BAO measurements

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

U.S. Department of Energy Office of Science

Implications for cosmology: ΛCDM

The DESI cosmology results

U.S. Department of Energy Office of Science

Implications for cosmology: kCDM

Universe is still flat

DESI BAO+θ*: $\Omega_{\rm K} = 0.0108^{+0.015}_{-0.0056}$

```
DESI BAO+BBN+θ*:
          \Omega_{\rm K} = 0.0003^{+0.0048}_{-0.0054}
```

```
DESI+CMB:
```

 $\Omega_{\rm K} = 0.0024 \pm 0.0016$

The DESI cosmology results

U.S. Department of Energy Office of Science

Implications for cosmology: wCDM

model/dataset	$\Omega_{ m m}$	$H_0 \ [{ m kms^{-1}Mpc^{-1}}$]
wCDM			
DESI	0.293 ± 0.015		$-0.99\substack{+0.15\\-0.13}$
$\text{DESI+BBN+}\theta_{*}$	0.295 ± 0.014	$68.6^{+1.8}_{-2.1}$	$-1.002\substack{+0.091\\-0.080}$
DESI+CMB	0.281 ± 0.013	$71.3\substack{+1.5 \\ -1.8}$	$-1.122\substack{+0.062\\-0.054}$
DESI+CMB+Panth.	0.3095 ± 0.0069	67.74 ± 0.71	-0.997 ± 0.025
DESI+CMB+Union3	0.3095 ± 0.0083	67.76 ± 0.90	-0.997 ± 0.032
DESI+CMB+DESY5	0.3169 ± 0.0065	66.92 ± 0.64	-0.967 ± 0.024

The DESI cosmology results

U.S. Department of Energy Office of Science

Implications for cosmology: w₀w_aCDM

 $w(a) = w_0 + (1 - a)w_a$

The DESI cosmology results

U.S. Department of Energy Office of Science

What's going on? CMB fault? $\int_{0}^{2} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} CMB \text{ (no lensing)}} CMB = 0$ DESI BAO + CMB $\int_{0}^{8} \int_{-1}^{1} \int_{0}^{1} \int_{0$

The DESI cosmology results

U.S. Department of Energy Office of Science

What's going on?

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

DESI fault?

The DESI cosmology results

U.S. Department of Energy Office of Science

What's going on?

DESI fault?

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

The DESI cosmology results

U.S. Department of Energy Office of Science

What's going on?

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

U.S. Department of Energy Office of Science

What's going on?

Both LRG bins seem a bit strange, on in D_M/D_H , the other in D_V/r_d

The DESI cosmology results

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

The DESI cosmology results

U.S. Department of Energy Office of Science

The H_0 parameter

With external datasets we can inform on the value of r_d and measure H_0

DESI BAO + ext data prefers a slightly larger value for H_0 , but consistent with Planck 18.

The DESI cosmology results

U.S. Department of Energy Office of Science

Neutrinos

 m_{ν}

CMB alone is not able to able to efficiently measure

The DESI cosmology results

U.S. Department of Energy Office of Science

Neutrinos

CMB alone is not able to able to efficiently measure m_{ν}

Adding BAO data breaks the degeneracy through H_0

Low preferred value of H_0 yields

 $\sum m_{
u} < 0.072\,\mathrm{eV}~(95\%,\mathrm{DESI}+\mathrm{CMB})$

Limit relaxed for extensions to ΛCDM

 $\sum m_{
u} < 0.195\,\mathrm{eV}$ for $w_0 w_a \mathrm{CDM}$

U.S. Department of Energy Office of Science

- Full Shape (FS) measurements were unblinded 3 weeks ago.
- FS will add RSD information (σ_8), and also add extra information on the expansion history through the broadband shape.
- Stay tuned for the end of 2024

The RSD analysis

U.S. Department of Energy Office of Science

- DESI has reported the most precise BAO measurement to date: 0.52%
- DESI + ext. data has measured H_0 with $\sim 1\%$
- DESI is consistent with a flat ΛCMD model
- When combined with CMB and <u>some SNe samples</u>, there are hints of timevarying DE EoS.
- Full Shape analysis is already unblinded. Results to appear by the end of 2024! DR2 (3 years) already taken. New BAO analysis to appear soon.
- DESI has recently been extended till the end of 2028, then DESI II will take over

Summary

U.S. Department of Energy Office of Science

First batch of DESI DR1 cosmological analyses are out: <u>https://data.desi.lbl.gov/doc/papers/</u>

- DESI 2024 I: First year data release
- DESI 2024 II: DR1 catalogs
- DESI 2024 III: BAO from Galaxies and Quasars at z < 2
- DESI 2024 IV: BAO from the Lyman- α Forest at z > 2
- DESI 2024 V: RSD from Galaxies and Quasars at z < 2
- DESI 2024 VI: Cosmological constraints from BAO measurements
- DESI 2024 VII: Cosmological constraints from RSD measurements
- + 15 companion papers

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

Summary

U.S. Department of Energy Office of Science

U.S. Department of Energy Office of Science

U.S. Department

Extra slides

U.S. Department of Energy Office of Science

Dark energy equation of state:

P = w ho

• w = constant

Extra slides

U.S. Department of Energy Office of Science

Dark energy equation of state:

$P = w\rho$

• CPL parameterization: $w(a)=w_0+(1-a)w_a$

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

Extra slides

U.S. Department of Energy Office of Science

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

U.S. Department of Energy Office of Science

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

U.S. Department of Energy Office of Science

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marin (ICCUB)

U.S. Department of Energy Office of Science

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)

Extra slides

Preference for $w_0 > -1, w_a < 0$ persists when curvature is left free

U.S. Department of Energy Offic

New Strategies for Extracting Cosmology from Galaxy Surveys - H. Gil-Marín (ICCUB)