
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 6, DECEMBER 2022 1281

Bayesian Performance Analysis for Algorithm
Ranking Comparison

Jairo Rojas-Delgado , Josu Ceberio , Borja Calvo, and Jose A. Lozano , Fellow, IEEE

Abstract—In the field of optimization and machine learning,
the statistical assessment of results has played a key role in con-
ducting algorithmic performance comparisons. Classically, null
hypothesis statistical tests have been used. However, recently,
alternatives based on Bayesian statistics have shown great
potential in complex scenarios, especially when quantifying the
uncertainty in the comparison. In this work, we delve deep into
the Bayesian statistical assessment of experimental results by
proposing a framework for the analysis of several algorithms
on several problems/instances. To this end, experimental results
are transformed to their corresponding rankings of algorithms,
assuming that these rankings have been generated by a probabil-
ity distribution (defined on permutation spaces). From the set of
rankings, we estimate the posterior distribution of the parameters
of the studied probability models, and several inferences concern-
ing the analysis of the results are examined. Particularly, we study
questions related to the probability of having one algorithm in the
first position of the ranking or the probability that two algorithms
are in the same relative position in the ranking. Not limited to
that, the assumptions, strengths, and weaknesses of the models
in each case are studied. To help other researchers to make use
of this kind of analysis, we provide a Python package and source
code implementation at https://zenodo.org/record/6320599.

Index Terms—Bayesian inference, benchmarking, evolutionary
algorithms, probabilistic models on permutation spaces.

I. INTRODUCTION

THE ANALYSIS of empirical results is of critical
importance in many scientific disciplines. According to

López-Ibáñez et al. [1], until a mathematical proof is dis-
covered, the ability to reach consistent conclusions, through
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experimental repetition performed by other researchers, is the
only way a research community can reach a consensus.

Usually, empirical results are surrounded by uncertainty
and, therefore, we need to handle this uncertainty to extract
sound conclusions. Classically, this uncertainty has been
addressed with the use of statistical tests. This approach
focuses on testing a certain hypothesis and deciding whether
there is enough statistical evidence in the results to reject that
hypothesis. Most likely, the results will show some degree of
difference in the performance of two given algorithms, and the
test is used to reject the null hypothesis.

Null hypothesis statistical tests have several weaknesses
that were recently highlighted by Benavoli et al. [2]. Among
many issues, arguably, the most relevant aspect is what
Benavoli et al. called the black and white thinking. Certainly,
the statistical test provides a reference of the uncertainty, the
so-called p-value, but this value is not easy to interpret, as it
mixes the magnitude of the difference and the sample size [3],
[4], [5]. Rather than interpreting this value, usually, a threshold
is set (0.05 by convention) to decide whether the differences
are due to chance or not, hence the binary nature of the tests.

Bayesian statistics provide an interesting alternative to the
classical statistical test approach, as they naturally handle the
uncertainty remaining after observing the results of the exper-
imentation. This is achieved by updating our prior belief in
whatever aspect we are interested in (e.g., the magnitude of
the differences between two algorithms) with the evidence.
The Bayesian approach broadens the possible analysis, as we
are not limited to just those statistics for which a p-value can
be computed. In this article, we propose a methodology to
analyze the results from a ranking perspective.

We are interested in comparing the performance of a set of
algorithms A = {A1, . . . ,An} when solving a set of problem
instances I = {I1, . . . , Ip}. The set of problem instances
can be as small as a single problem instance. We record
a score Fi,j = f (Ai, Ij) for each algorithm and problem
instance. We consider that Fi,k < Fj,k means that the ith
algorithm outperforms the jth algorithm on the kth problem
instance. In practice, we usually run an algorithm in a problem
instance several times obtaining a score for each repetition:
Fi,j,1, . . . ,Fi,j,r where r is the number of repetitions.

In computer science and especially when comparing the
results of evolutionary algorithms, we usually compare a set of
algorithms in a set of problem instances and draw conclusions
based on such performance analysis. The way we proceed with
this comparison has deep implications that are often not con-
sidered. First of all, in many cases, we do not have access to
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the entire set of problem instances of interest, nor do we know
the entire set of algorithms to compare. Moreover, the algo-
rithms are typically stochastic, meaning that each time they
are run they may provide a different result. All these aspects
have to do with the definition of the population from which
we are doing inference, and this population can be different in
different analyses. It is worth noting that we are doing infer-
ence, and that has very important implications. Specifically,
we will try to draw conclusions about a certain population by
analyzing a sample from that population.

In a real-life situation, the first step would be to decide
which is our target population. There are different alternatives
here that involve determining the set of problem instances,
the set of algorithms, the way different sources of variance are
considered together or not and, in general, the conditions under
which we run the algorithms in the problem instances. The
important consideration to keep in mind is that the conclusions
we obtain from our analysis only apply to the population we
are considering and any further generalization to a different
population is risky. From a general perspective, in our work,
we focus our attention on populations that involve paired and
noncomparable comparisons due to their practical relevance in
the comparison of evolutionary algorithms.

Paired comparisons mean that the score of a given algorithm
obtained in a particular problem instance is paired to the score
obtained by the other algorithms in that particular problem
instance, but it is not paired to other problem instances. In
other words, deriving conclusions from Fi,k < Fj,h for k �= h
should not be included in the analysis. For example, we
should not compare the score of algorithm Ai when solv-
ing a small problem instance with the score of algorithm Aj

in a different and larger problem instance. The scenario in
which we conduct several repetitions of the algorithms in the
same problem instance deserves special consideration. In this
case, we could consider crossing the scores obtained from the
different repetitions within the same problem instance.

Noncomparable observations mean that the score of a spe-
cific algorithm on a problem instance is not comparable to the
score of the same algorithm on a different problem instance,
for example, because the score is on a different scale. This cre-
ates difficulties with the use of simple statistics, such as the
mean score of the algorithm in the set of problem instances,
to summarize and compare the different algorithms.

In such a scenario, paired and noncomparable observations,
ranking data seems a natural choice to model the performance
of the algorithms. The performance of a single run of the dif-
ferent algorithms on the kth problem instance is represented by
a permutation of n-items π ∈ Sn, where Sn is the set of permu-
tations of n-items such as Fπ(1),k,j < · · · < Fπ(n),k,j. Therefore,
instead of dealing with the raw score data Fi,j,k, we deal with
a set of permutations of n-items S = {π1, π2, . . . , πpr}, one
permutation per instance-repetition.

The comparison and benchmarking of evolutionary compu-
tation methods and other optimization algorithms is a wide and
active area of research [6], [7]. Perhaps, the first paper for the
Bayesian estimation of ranking models in evolutionary com-
puting was introduced by Calvo et al. [8] in which the authors
consider a ranking model known as Plackett–Luce (PL). The

interpretation of the resulting ranking model parameters and
their associated probability distributions is used to draw con-
clusions on the performance of the algorithms. Specifically,
Calvo et al. studied the probability that one algorithm is the
best. More recently, Mattos et al. [9] discussed several practi-
cal aspects related to the Bayesian data analysis, such as the
interpretation of posterior summaries, the need to check for
the Monte Carlo sampling convergence and different kinds
of sensitivity analysis that can be performed. In a similar
research direction, Carrasco et al. [6] surveyed recent statis-
tical analyses for the comparison of evolutionary algorithms,
including several Bayesian tests and how to address some of
the criticisms of null hypothesis statistical tests.

We extend the previous work of Calvo et al. [8] by con-
sidering additional probabilistic models on permutation spaces
for Bayesian inference. We explore the richness of additional
posterior summaries that can be considered by the proposed
ranking models beyond the probability that one is the best.
In the same spirit of the previous works regarding the impor-
tance of not considering the Bayesian performance analysis
as a black-box tool, we carefully review the assumptions the
proposed models make, their properties and the implications of
such assumptions and properties in our analysis. We study five
properties of the proposed probabilistic models on permutation
spaces previously discussed by Critchlow et al. [10]: 1) label
invariance; 2) reversibility; 3) L-decomposability; 4) strong
unimodality; and 5) complete consensus.

The remainder of this manuscript is organized as follows.
In Section II, we describe the ranking models studied in
this work. In Section III we describe how, through careful
interpretation of the ranking model parameters when conduct-
ing Bayesian inference, we can draw and report conclusions on
the performance of the algorithms. In Section IV, we develop a
case study with synthetic data and real data in which we com-
pare the performance of several evolutionary algorithms. In
Section V, we provide some general guidelines and an outlook
for future work on this particular topic.

II. PROBABILITY MODELS ON PERMUTATION SPACES

In this section, we study several probability models on per-
mutation spaces for the Bayesian inference. We review the
definition, main assumptions, and properties of such models.
This is not an exhaustive review and the interested reader
will find in the literature other models that have not been
considered here.

A. Bradley–Terry Model

The Bradley–Terry (BT) model dates back to at least 1929
and has applications in a broad range of problems [11]. This
model is used in a situation in which the items to compare
(algorithms in our context) are repeatedly compared with one
another in pairs such as

Pr
[
Ai outperforms Aj

] = θi

θi + θj
(1)

where θi is a positive-valued parameter associated with algo-
rithm Ai. Hence, we are dealing with n parameters.

Authorized licensed use limited to: Universidad Pais Vasco. Downloaded on April 20,2023 at 11:14:04 UTC from IEEE Xplore.  Restrictions apply. 



ROJAS-DELGADO et al.: BAYESIAN PERFORMANCE ANALYSIS FOR ALGORITHM RANKING COMPARISON 1283

Considering this model, a ranking can be generated by sam-
pling from the distribution in (1), where, for every pair, a
preference relation is obtained, i.e., either Ai is preferred to
Aj or vice versa. If there are no circular triads (e.g., Ai is
preferred to Aj, Aj is preferred to Ak, and Ak is preferred to
Ai) a ranking can be produced. Consequently, the probability
of observing a ranking is given as follows:

Pr[π |θ ] = 1

ψ(θ)

n−1∏

i=1

[
θπ(i)

]n−i (2)

where ψ(θ) is a constant, whose value does not depend on π ,
chosen to make the probabilities sum to 1 and θ ∈ �θ ⊂ R

n.
For completeness

ψ(θ) =
∑

π∈Sn

n−1∏

i=1

[
θπ(i)

]n−i
. (3)

The BT model has been extended to allow for comparisons
among more than two items at once. The generalization to
comparisons of any number of items is known as the PL
model.

B. Plackett–Luce Model

When considering the PL model, the Luce axiom states that
the probability of item Ai outperforming the other items in the
set A is

Pr
[
Ai outperforms Aj ∀Aj ∈ A

] = θi∑
Aj∈A θj

(4)

such as Ai /∈ A and θi is a real positive parameter related to
the goodness of the ith item. The probability of observing a
given ranking under the PL model is given by

Pr[π |θ] =
n∏

i=1

θπ(i)∑n
j=i θπ(j)

(5)

where θ ∈ �θ ⊂ R
n. Moreover, by restricting

∑n
i=1 θi = 1,

the model parameters can be interpreted as the probability of
each item being the top ranked, i.e., Pr [π(1) = i] = θi.

C. Mallows Model

The Mallows model (MM) is one of the preferred distribu-
tions to model ranking data. It belongs to the location-scale
family since it is parametrized by a location parameter (also
known as central ranking) π0 ∈ Sn and a non-negative scale
(also known as dispersion) parameter, β.

The location parameter is the consensus ranking of the dis-
tribution. The probability of any other permutation decreases
exponentially with its distance to π0. In our work, Kendall’s-
tau metric has been chosen to measure the distance between
rankings.1 The dispersion parameter controls the variance of
this decay. Considering the MM, the probability of observing
a given ranking is given by

Pr[π |θ = (π0, β)] = exp(−βd(π0, π))

ψn(β)
(6)

1Other distance metrics can be consulted in [12].

where θ ∈ �θ ⊂ Sn ×R and d(., .) is the Kendall-tau distance
between two permutations, i.e.,

d
(
σ, σ ′) =

∑

i<j

I
[
(σ (i)− σ(j)) · (

σ ′(i)− σ ′(j)
)
< 0

]
(7)

where I[ · ] denotes the indicator function and ψn(β) is a
normalization constant, which in the case of the Kendall-tau
distance is given by

ψn(β) =
n−1∏

i=1

1 − exp(−β(n − i + 1))

1 − exp(−β). (8)

III. BAYESIAN MODELS FOR ALGORITHM RANKING

COMPARISON

In this section, we briefly review how the Bayesian inference
can be used for algorithm performance analysis and describe
the use of probability models on permutation spaces for this
task. We carefully describe how to define the related like-
lihood functions and prior distributions within the Bayesian
inference framework, and analyze whether special modifica-
tions are required to come up with a Markov Chain Monte
Carlo approach to sample from the posterior distribution.

Bayesian inference is a method of statistical inference in
which Bayes’ theorem is used to update the distribution of
some parameters as more data or information become avail-
able. Briefly, in the Bayesian inference, we are interested in
the posterior distribution given by

Pr[θ |S] = Pr[S|θ ] · Pr[θ]

Pr[S]
. (9)

The main components for Bayesian inference are listed as
follows.

1) The likelihood function Pr[S|θ ], which represents the
probability of observing the data S assuming that a given
set of parameters θ explains such data.

2) The prior probability Pr [θ], representing the probability
of the parameters before observing any data.

3) The data probability Pr [S], representing the probability
of observing the data independently of the parameters.

In our context, data refers to the ranking data S =
{π1, . . . , πp} where πi ∈ Sn and parameters refer to the rank-
ing probability model parameters, which we denote as θ ∈ �θ .
Formally, we have a probability mass function with support on
Sn for the data which is specified by the ranking probabilistic
model. If we assume that the ranking data is a sample of i.i.d.
permutations, then the likelihood function is given by

Pr[S|θ] =
∏

π∈S

Pr[π |θ] (10)

where Pr [π |θ] denotes such a probability mass function. The
prior distribution encodes any preference for the ranking model
parameters θ . Formally, the prior distribution is given by a
probability distribution with support �θ denoted as follows:

Pr[θ |α] (11)

where α parametrizes this probability distribution (also known
as hyperparameter). The data probability is the distribution
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of the observed data marginalized over the parameters of the
model

Pr[S|α] =
∫

�θ

Pr[S|θ ] · Pr[θ |α]dθ (12)

which does not depend on the parameters. Obtaining this
last component is the main challenge to come up with a
closed-form expression in the Bayesian inference. Therefore,
approximation methods are used, such as Markov Chain Monte
Carlo methods, e.g., the Metropolis–Hastings algorithm. With
such approximation methods, we can use a function propor-
tional to the posterior instead of the posterior itself, such
as

Pr[θ |S] ∝ Pr[S|θ ] · Pr[θ |α]. (13)

In the following sections, we study the likelihood functions,
prior distributions, and posterior summaries associated with
the probability models on permutation spaces.

A. Likelihood Functions

In our specific application of algorithm performance anal-
ysis, the likelihood function represents the probability of
observing a set of rankings S given some parameters θ ∈ �θ .
We assume that the rankings in S are i.i.d., which allows us to
obtain the likelihood function as described in (10). To com-
plete the definition of the likelihood function for each model,
the probability of observing a ranking Pr [π |θ] is given by
each probability model: for the BT model as specified in (2),
for the PL model as specified in (5) and for the MM model
as specified in (6).

B. Priors Specification

Mattos et al. [9] made a distinction between noninforma-
tive, weakly informative, and informative priors based on how
much information is included in the Bayesian model. In practi-
cal settings, choosing between different prior distributions and
their hyperparameters should be made based on some previous
knowledge (e.g., by making a review of the state-of-the-art and
giving more weight to the algorithms that perform better).
When no previous knowledge exists, then a noninformative
prior should be preferred. It is the role and responsibility of
the researcher, the reviewer, and the community to assess if
the knowledge encoded in the prior distributions is in line with
the state-of-the-art. Nonetheless, the effect of the prior distri-
bution on the posterior distribution diminishes as the amount
of data grows [13]. However, this is just an asymptotic result
and it does not guarantee that an arbitrary prior will give a
consistent Bayesian estimate of the unknown parameter in all
circumstances [14]. In this direction, several recent works have
addressed the important issue of whether the posterior distribu-
tions derived with distinct priors become very similar if more
data is gathered [15], [16].

Beyond such general considerations, we may conduct a sen-
sitivity analysis, in which we corroborate that the results of
our analysis are not too different when using different prior
distributions. This is an important step to verify the robustness
of our analysis which is widely used in related studies, such

as Calvo et al. [8] and Mattos et al. [9]. In the supplementary
material of our work, we provide details of how to conduct
such sensitivity analysis as an example. Another alternative
for modeling prior distributions is to take a hyper prior dis-
tribution and perform hierarchical Bayesian inference [2]. We
model the prior distributions as follows.

1) Bradley–Terry: In the BT model, θ can be multiplied by
an arbitrary positive constant k > 0 without affecting the
associated probability in (1). Therefore, two-parameter
vectors are equivalent if one is a scalar multiple of the
other, and, consequently, we can constrain the parameter
space to sum one. This allows us to model the prior
distribution for θ using the Dirichlet distribution with
α = (α1, . . . , αn), αi > 0 concentration parameters.

2) Plackett–Luce: The PL model is a Thurstone model in
which the rankings are given by the relative ordering of
n i.i.d. real random variables X1, . . . ,Xn such that each
variable is Gumbel distributed and only differs in their
location parameter [17]. In other words, Xi ∼ g(μi, β)

where g(μi, β) is the Gumbel distribution with loca-
tion parameter μi and scale parameter β. Guiver and
Snelson [18] showed that given the location parameter of
the Gumbel distribution for the ith i.i.d. random variable
of the Thurstone model μi and a fixed scale parameter
β, the PL model parameters relate to the location param-
eter of the Thurstone model as follows θi = exp(μi/β)

and have a Gamma distribution conjugate prior. This has
some interesting ramifications in the definition of the
prior probability distribution in the Bayesian analysis.
Therefore, we consider two prior distributions.

a) The individual parameters θi, modeled using the
Gamma distribution [18].

b) The parameter vector θ , modeled using the
Dirichlet distribution [8].

3) Mallows Model: For this model, the prior distribution
can be modeled by providing a prior for the central rank-
ing and for the dispersion parameter. We use the uniform
prior for the central ranking and a truncated exponential
prior for the dispersion parameter, as suggested by [19]

π0 ∼ Pr[π0] = 1

n!
(14)

β ∼ Pr[β|λ, βmax] = λ exp(−λβ)
1 − exp(−λβmax)

(15)

where λ and βmax are two hyperparameters.

C. Posterior Summaries

In the Bayesian analysis, we get a posterior distribution of
the parameters of the proposed models, i.e., Pr [θ |S]. With such
posterior distribution, we can get point estimates of the param-
eters of the models (e.g., the mean) and more importantly
credible intervals that provide an estimate of the uncertainty.

In general, the posterior distribution of the model parame-
ters is not particularly informative. Therefore, we derive from
the posterior distribution of the model parameters, other more
informative posterior distributions, such as the posterior distri-
bution of a given algorithm being the best. For example, given
one sample of the posterior distribution for the parameters of
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the PL model θ ∼ Pr [θ |S], we can obtain the probability of
algorithm Ai being the best as follows:

Pr[π(1) = i] = θi (16)

From the derived posterior distributions, we can retrieve again
point estimates or credible intervals with an uncertainty esti-
mation quantified in the variance of the resulting posterior
distributions.

Particularly, we focus our attention on the following pos-
terior summaries: 1) the probability of an algorithm being
ranked the first; 2) the probability of an algorithm outperform-
ing another algorithm; and 3) the probability of an algorithm
being in the top-k ranking.

1) The probability of an algorithm Ai being ranked the first
is given by the following expression:

Pr[π(1) = i] =
∑

π(1)=i

Pr[π |θ ]. (17)

2) The probability of a given algorithm Ai outperforming
another algorithm Aj is

Pr
[
π−1(i) < π−1(j)

]
=

∑

π−1(i)<π−1(j)

Pr[π |θ] (18)

where π−1 is the inverse of the permutation.
3) The probability of an algorithm Ai being in the top-k

ranking is

Pr
[
π−1(i) ≤ k

]
=

∑

π−1(i)≤k

Pr[π |θ]. (19)

Additional Posterior Summaries: Though in this work we
only explore a few interesting questions related to posterior
summaries, several others may be of interest to the community
and are left for future works, for example:

1) probability that a given algorithm is ranked in a given
position other than the first one;

2) given a subset of the algorithms, the probability that a
given algorithm is better than all the algorithms in that
subset;

3) given two disjoint subsets of the algorithms, the prob-
ability that all the algorithms in a subset appear in a
ranking before the algorithms in the other subset.

The richness of posterior summaries that can be obtained
from the posterior distributions of the ranking model param-
eters is among their main attractiveness. Simple posterior
summaries such as answering binary questions (e.g., is algo-
rithm A1 better than algorithm A2) are naturally covered in
the scenario of the Bayesian ranking comparison of several
algorithms (as it is the particular case of rankings of two
elements). Nevertheless, when comparing just two algorithms
there are indeed other more specific approaches reported in the
literature, such as that proposed by Benavoli et al. [2] which
considers a rope parameter to account for the cases in which
the two algorithms perform similarly.

Computational Complexity: In the naive case, the previously
discussed marginal probabilities have a computational com-
plexity of O(n!) which comes from the large sample space
of the probabilistic models on permutation spaces. For some

of the proposed models and marginal probabilities of interest,
some closed-form expressions may be available. For example,
the probability of a given algorithm being ranked the first can
be obtained in O(1) for the PL as stated in (16) and in O(n)
for the MM using the Kendall-tau distance if we consider the
result of Collas and Irurozki [20] (Lemma 1) as follows:

Pr[π(1) = i] = exp
(
−β

(
π−1

0 (i)− 1
))ψn−1(β)

ψn(β)
(20)

where θ = (π0, β) ∈ Sn × R are the MM parameters (central
permutation and dispersion parameter). However, in cases in
which no closed-form expression exists, we may be limited
by expensive computations when the number of algorithms to
be compared (n) is not small. Exploring different probabilistic
models on permutation spaces is in part motivated by the high
computational complexity of obtaining some of these marginal
probabilities in cases where no closed form expressions are
available.

D. Bayesian Analysis: Additional Considerations

In Bayesian analysis, many arguments have been provided
regarding different important issues. In this sense, topics such
as selecting the number of samples used as burnout in the
Markov Chain Monte Carlo sampling, the need to check the
convergence of the Monte Carlo chains or how Bayesian anal-
ysis provides a quantification of the uncertainty are widely
covered in [9]. In this section, we provide additional back-
ground on practical issues related to the Bayesian ranking
comparison of algorithms beyond such general issues.

Given the scores of a set of algorithms when solving a set
of problem instances, we create a set of permutations that
represents the rankings of the algorithms. In this section, we
describe how to obtain a set of permutations from the scores
of the different algorithms while dealing with practical issues
such as ties between the algorithms.

Ties Between Algorithms: In practical settings, when com-
paring the performance of two or more algorithms in the same
problem instance and repetition pair, there can be ties, that is,
Fi,j,k = Fi′,j,k for i �= i′. We deal with this kind of situation
by obtaining several rankings for each problem instance and
repetition pair in which ties exist. The number of additional
rankings corresponds to all possible ways in which the ties
may be resolved in favor of one algorithm or another.

After collecting the permutations from the score data,
including the additional permutations coming from resolving
ties, we need to consider the bias induced by including more
than one permutation from a single problem-instance pair. For
example, six permutations generated by a triple-tie should not
count the same as six permutations obtained from six different
repetitions.

The ideal solution in these cases would be to: 1) take all
permutations in which there are no ties and give those a weight
of one and 2) take all other permutations in which there are t
ties and resolve all ties generating t! permutations while giving
those a weight of 1/t! The next step would be to consider
all the resulting permutations in the Bayesian inference, but
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include the weight in the likelihood function, that is

Pr[S|θ] =
∏

π∈S

wπ Pr[π |θ] (21)

where wπ is the weight associated with permutation π and S
is the set that contains all the permutations obtained from the
scores, including the ones obtained by solving the ties.

In practice, however, when there are many ties, solving all
ties this way yields a factorial number of permutations which
may be prohibitive. Therefore, we could opt to choose some
sample estimator of the likelihood function. In this direction,
we could take a sample in which, first, we include all the per-
mutations that do not have ties and give those a weight of one
and, second, solve the ties of the remaining permutations in
which a number of t ties exists. However, instead of includ-
ing all the t! resulting permutations, we include a maximum
number k of those. If t! < k, then, we just include all the
permutations, otherwise, we take a uniform subsample from
the set of t! permutations and give them a weight of 1/k.

Naturally, we need some sensible ways of determining the
value of k. In this sense, our first recommendation would be
to take the largest possible value of k according to practical
computational constraints. A second recommendation goes in
the direction of conducting a sensitivity analysis to verify if
the general overview and conclusions are affected when we
vary the number of k after some point.

Additional Models on Permutation Spaces: Other probabilis-
tic models on permutation spaces may be of interest to perform
Bayesian analyses of algorithm performance. Considering sev-
eral other models to this end may be adequate to fit some
known assumptions of the data, add more flexibility to the
analyses or enable the computation of some posterior sum-
maries more efficiently. Some examples of such probabilistic
models on permutation spaces are listed as follows.

1) The generalized MM under different distances: Kendall-
tau, Ulam, and Cayley.

2) The weighted MM under the Hamming distance as
introduced in [12].

E. Properties, Assumptions, Pros and Cons

Let, Pr [π ] ∈ P be a probabilistic model where π ∈ Sn

and Pr [π ] denotes its probability mass function whereas P
denotes a class of such models, usually indexed by a set of
parameters. A probabilistic model on permutation spaces can
be characterized based on different properties, such as label
invariance, reversibility, L-decomposability, strong unimodal-
ity, and complete consensus [10].

1) Label Invariance: A class of distributions P is label
invariance if for all Pr [π ] ∈ P and a relabeling permu-
tation γ ∈ Sn, there is another probability distribution
Prγ ∈ P such as Prγ [π ◦ γ ] = Pr [π ]. Here, π ◦ γ =
π(γ (1)), . . . , π(γ (n)) is the composition operation.

2) Reversibility: A class of distributions P has the
reversibility property if for all Pr [π ] ∈ P , there is
another Prγ ∈ P in which reversing the natural linear
ordering of the rankings, i.e., γ ◦π with γ ∈ Sn, γ (i) =
n + 1 − i yields Pr [π ] = Prγ [γ ◦ π ].

TABLE I
PROPERTIES OF THE PROBABILITY MODELS ON PERMUTATION SPACES

3) L-Decomposability: A model is said to be
L-decomposable if the probability of a ranking π

can be expressed as
∏n

i=1 Pr [π(i)|{π(i+1), . . . , π(n)}],
where Pr [π(i)|{π(i + 1), . . . , π(n)}] is the prob-
ability that item π(i) is better than the items in
{π(i + 1), . . . , π(n)}.

4) Strong Unimodality: A model is said to have the strong
unimodality property if given the mode of the distri-
bution π0 ∈ Sn, for each pair of items (i, j), such
as π0(i) < π0(j) and any permutation π ∈ Sn in
which π(i) = π(j) − 1, Pr [π ] ≥ Pr [π ◦ γi,j] with
γi,j ∈ Sn, γi,j(i) = j, γi,j(j) = i, γi,j(m) = m for all
m �= i, j. Here, π ◦ γi,j is the permutation that agrees
with π except that the ranks assigned to items i and j
are exchanged.

5) Complete Consensus: A model is said to have the
complete consensus property if given the mode of the
distribution π0 ∈ Sn, for each pair of items (i, j) such as
π0(i) < π0(j) and any permutation π ∈ Sn in which
π(i) ≤ π(j), Pr [π ] ≥ Pr [π ◦ γi,j] with γi,j ∈ Sn

defined as before. Complete consensus implies strong
unimodality.

Table I summarizes the properties of the different proba-
bilistic models in permutation spaces. In general, all models
share the same properties except for the PL model, which does
not have the reversibility property.

In some cases, these properties are important in determining
the correct use of the models when conducting the Bayesian
performance analysis for algorithm ranking comparison. In
other cases, some of these properties are shared by all mod-
els and we highlight how it makes sense in the context of
algorithm ranking comparison.

Label Invariance and Reversibility: Label invariance is a
property that is shared by the BT, the PL, and the MM. This
property ensures that the results of the Bayesian analysis we
conduct using these models are invariant to any arbitrary rela-
beling of the algorithm scores. This is the same as saying that
the name of the algorithms or the order in which we compare
their scores has no impact on the results of our analysis.

Reversibility is a property that is shared only by the BT
and the MM but not by the PL model. When a model has
the reversibility property, it means that we can do the same
analysis if we rank the algorithms from best to worst or from
worst to best, because in either case, the given probability
model in permutation spaces can represent both probability
distributions.

As an example of the consequences of this, consider the
case in which we are interested in two different posterior sum-
maries: 1) the probability of an algorithm being the best, i.e.,
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Pr [π(1) = Ai] and 2) the probability of an algorithm being
the worst, i.e., Pr [π(n) = Ai]. We may be tempted to obtain
two sets of rankings in which we rank the algorithms from
best to worst and make an inference on the model parame-
ters and another in which we rank the algorithms from worst
to best. We may expect that the results of the inferences are
the same, however, this is not necessarily the case for the PL
model which does not have the reversibility property.

L-Decomposability: When conducting an algorithm rank-
ing comparison, the L-decomposability property states that
the probability of an algorithm outperforming others does not
depend on any other algorithm that appears in a previous posi-
tion in the ranking. In our context, this is a convenient property
for the considered probabilistic models on permutation spaces.

Unimodality, Consensus, and Testing: Strong unimodality
is an assumption in which there is a ranking π0 with max-
imum probability and given an arbitrary permutation π the
probability Pr [π ] is nonincreasing as π moves away from π0.
The permutation π moves away from π0 when two adjacent
items in π are in the same relative ordering according to π0
and we exchange them. Complete consensus is an even more
restrictive assumption that implies strong unimodality.

Given a sample of permutations, verifying that its distribu-
tion is strongly unimodal is a core issue to correctly making
use of strongly unimodal probabilistic models on permuta-
tion spaces. This problem can be considered in the framework
of identity testing, in which we are interested in answering
a yes-or-no question about the closeness of some explicitly
given distribution to an unknown distribution from which ran-
dom samples are observed [21]. Despite the recent efforts to
develop identity tests for ranking data, this is a challenging
problem because the size of the sample space is factorial in
the number of algorithms being compared [22]. In this regard,
no unimodality test is known to the authors.

However, in practice, we can get some insights into these
unknown distributions by observing the histogram of permu-
tations at a given Kendall-tau distance from the ranking that
appears more times in the sample. In this regard, we can expect
that some models, such as the MM, are more sensitive to devi-
ations from strong unimodality. This is because in the MM the
probability of a permutation decays exponentially as its dis-
tance from the mode increases, which is an additional and
more restricted assumption.

IV. CASES OF STUDY

In this section, we compare the performance of several
algorithms in two situations: 1) using synthetic data and
2) using data from real experiments. The first analysis,
conducted in a controlled scenario, studies the use of the
Bayesian performance analysis when the scores of the dif-
ferent algorithms are synthetically generated from a known
probability distribution. The second situation corresponds to
a real problem in which several optimization algorithms are
compared when solving a benchmark set of the permutation
flow shop scheduling problem (PFSP).

Bayesian Inference Settings: In our analyses, we use 1000
samples of the posterior distribution using a Markov Chain

Monte Carlo method from which 500 samples are dis-
carded as burn-in samples and the other 500 are considered
for our analysis. In the specific case of the MM, we use
the modified Metropolis–Hastings algorithm, introduced by
Vitelli et al. [19]. We use the following hyperparameters for
the prior distribution of the models.

1) BT: Concentration parameters of the Dirichlet distribu-
tion αi = 1 for 1 ≤ i ≤ n, where n is the number of
algorithms being compared.

2) PL With Dirichlet Prior (PLD): Concentration parame-
ters of the Dirichlet distribution αi = 1 for 1 ≤ i ≤ n,
where n is the number of algorithms being compared.
The selection of the concentration parameters αi = 1
corresponds to the flat Dirichlet distribution, which
stands for an uninformed prior on the PL parameters.

3) PL With Gamma Prior (PLG): α = 0.5 and β = 0.5
where α is the shape parameter and β the dispersion
parameter of a Gamma distribution. See [18] for further
details on these hyperparameters.

4) MM: Rate parameter λ = 0.1 and truncation parameter
βmax = 1.0 × 10−6 for the MM dispersion parameter
prior distribution. See (15) and [19] for further details
on these hyperparameters.

It is worth mentioning that in our case study we are choos-
ing uninformed priors for our analysis. However, those should
not be taken as a general recommendation to be used in all
scenarios. In practice, there is a myriad of recommendations
in the literature to follow when selecting priors and hyperpa-
rameters and some of them have been reviewed and referenced
in Section III-B.

Code and Data Availability: We provide a publicly available
Python package to carry out the Bayesian analysis introduced
in our work. In addition, we provide the data and presentation
code used to carry out the analyses conducted in this section.2

1) Python Package and Documentation: https://pypi.org/
project/BayesPermus.

2) Data and Presentation Code: https://github.com/ml-opt/
BayesPermusPresentation.

A. Synthetically Generated Scores

In this section, we use the proposed Bayesian inference
approach in the comparison of several algorithms on differ-
ent problem instances using synthetically generated scores.
This kind of study allows us to investigate how the Bayesian
inference of the different probabilistic models on permutation
spaces is affected under different circumstances. In order to
obtain the synthetic dataset, we compare n independent ran-
dom variables Gaussian distributed but with different location
and dispersion, i.e., X1, . . . ,Xn such as Xi ∼ N (μi, σi).

Obtaining the Permutations: Given the mean and standard
deviation of n Gaussian distributed random variables and a
number of permutations, denoted as p, we proceed as follows.

1) Sample from each Gaussian distributed random variable,
such as xi ∼ N (μi, σi) for 1 ≤ i ≤ n. As before, n is
the number of algorithms being compared.

2The precise code to reproduce our analysis can be found in a Zenodo
permanent repository at https://zenodo.org/record/6320599.
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Fig. 1. Probability of each algorithm being the top-ranked algorithm using
synthetically generated data. Each plot represents a different algorithm while
the values represented in the horizontal axis show the results for the different
Bayesian inference models.

2) Create a permutation π ∈ Sn from the scores provided
by each random variable, such that xπ(1) < · · · < xπ(n).

3) Repeat the previous steps p times.
Comparing the Bayesian Inferences Results: In practice,

we sample 10 000 permutations from the synthetic scores and
assume it is our population. This way, we can obtain the differ-
ent marginal probabilities of interest from the population and
take it as ground truth. Afterward, we sample a smaller number
of permutations from this assumed population and conduct the
Bayesian inferences on this sample. This way, we can eval-
uate how the different Bayesian inferences of the posterior
summaries of interest deviate from the ground truth.

1) Comparing the Algorithms: We compare a fixed number
algorithms n = 4 on several problem instances p = 1000.
The scores of each algorithm are generated from a Gaussian
distribution with mean μ1 = 2.0, μ2 = 4.0, μ3 = 6.0, and
μ4 = 8.0 and standard deviation σi = 1.0 for 1 ≤ i ≤ 4.

Probability of an Algorithm Being in the First Position: In
Fig. 1, we represent the probability of each algorithm being
the top-ranked algorithm (i.e., being the best performing algo-
rithm). The figure shows violin plots [23], one per algorithm,
representing the distribution of the studied probability when
considering the samples of the posterior distribution Pr [θ |S].
The black dashed horizontal line represents the empirical prob-
ability of each algorithm to be ranked the first which is
obtained based on the number of times each algorithm appears
in the first position of the permutations in the population.

Fig. 1 shows that the probability of being ranked first is
higher for algorithm A1 than for the other algorithms. The
Bayesian inference using the PL model with the two specified
priors and the BT model is slightly more in agreement with
the ground truth than the inference conducted with the MM.
The reference to the uncertainty of the Bayesian inference can
be obtained from the variance of the posterior distributions.

Probability of an Algorithm Outperforming Others: Fig. 2
shows the probability of each algorithm, represented in the
center of the plots, outperforming the other algorithms repre-
sented in the outer ring of the polar coordinate system.

Fig. 2 shows the results for just the BT model. Each plot is
divided into several sectors, one sector for each of the other
algorithms being compared. For example, when we are com-
paring A1 with A2, A3, and A4 (the top-left plot), the polar
coordinate system is divided into three sectors, in which, from

Fig. 2. Probability of each algorithm outperforming others according to the
BT model. Each plot represents the probability that the algorithm in the center
outperforms the others in the outer ring of the polar coordinate system.

0 to 360/3 degrees, we represent the probability that A1 is bet-
ter than A2, and so on. When comparing A1 with A2, the plot
is created as follows.

1) Draw a sample from the posterior distribution of the
model parameters θ ∼ Pr [θ |S].

2) Get the probability of algorithm A1 being better than
algorithm A2, i.e., p = Pr [π−1(1) < π−1(2)|θ].

3) Create a point in the polar coordinate system (p, r) with
r ∼ unif(0, 360/3).

We repeat this process for each posterior sample obtaining the
presented plot in Fig. 2. Here, the dispersion of the distance
of the dots from the origin of the polar coordinate system
provides insights into the uncertainty of the estimations.

Probability of an Algorithm Being the Top-k Ranking: Fig. 3
shows the probability of each algorithm being in the top-k
ranking. The black dots represent the empirical probabil-
ity obtained from the population. This empirical probability
is computed based on the number of times each algorithm
appears in the top-k rankings of the permutations generated
from the scores. This posterior summary may be of interest
when we want to evaluate whether two disjoint subsets of
algorithms form two groups and one of them outperforms the
other. In this example, we may argue that the algorithms A1
and A2 outperform A3 and A4.

In general, we observe small discrepancies between the
MM and the other models. We further investigate the causes
behind such differences between the empirical distributions
and the Bayesian inferences. Moreover, we evaluate whether
this affects only the MM or all the studied models.

2) Multimodal Empirical Distributions: The PL, BT, and
MM (with Kendall’s-tau distance) share the same properties of
label invariance, strong unimodality, and complete consensus.
However, the MM makes additional assumptions regarding the
mode and how the probability decays for permutations that
move away from such mode (i.e., exponentially). We further
investigate how the strong unimodality assumption made by
the studied probability models is a sensible property to per-
form the Bayesian inference. We focus our attention on cases
where the empirical distribution of the permutations does not
conform to a unimodal distribution. Beyond that, we are also
interested in whether the different probabilistic models studied
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Fig. 3. Probability of each algorithm being in the top-2 and top-3 ranking.
The values in the horizontal axis within each plot represent the marginal
probability for the different algorithms.

in this work exhibit some differences when the unimodality
assumption is not ensured in the population.

Here, we use the same data generation approach used in
the previous section obtaining a number of p = 1000 per-
mutations. The mean values for the Gaussian distribution of
the n = 4 random variables used to obtain the scores of the
algorithms are kept as before while we define three different
configurations for the standard deviation as follows.

1) Configuration 1: σ1 = 2.0, σ2 = σ3 = 1.0, and σ4 =
2.0.

2) Configuration 2: σ1 = 4.0, σ2 = σ3 = 1.0, and σ4 =
4.0.

3) Configuration 3: σ1 = 12.0, σ2 = σ3 = 1.0, and σ4 =
12.0.

The idea behind the different configurations is to modify
the standard deviation of the Gaussian distributed random
variables which are responsible for generating the scores of
algorithms A1 and A4. Here, as we increase the standard
deviation, the probability of obtaining rankings in which A4
outperforms A1 increases, and therefore we can expect a
multimodal empirical distribution of the rankings. Fig. 4 shows
several histograms with the number of permutations at differ-
ent Kendall’s-tau distances from the mode. In this case, the
mode is assumed to be the one with the highest frequency
in the sample. Though this is not a proper identity test for
unimodality, we observe that for the first configuration, the
empirical distribution appears to be unimodal. Conversely,
for the third configuration, the distribution seems less
unimodal.

Fig. 5 shows the probability of algorithm A1 being the
best algorithm when considering the different configurations.
Each column in the figure represents a different configuration,

Fig. 4. Histograms showing the number of permutations in the sample at
different Kendall’s-tau distances from the mode.

Fig. 5. Probability of algorithm A1 being the top-ranked algorithm using
different configurations of synthetically generated data.

allowing us to observe how the multimodality of the empirical
distribution affects the marginal probability estimation.

In Fig. 5, as the distribution of the permutations departs
from unimodality, the results are affected when compared to
the ground truth. We notice that all probabilistic models are
affected, but the MM seems to be more sensitive than the
PL and BT models. This may be related to the previously
discussed additional assumptions made by the MM. We do not
provide the marginals related to the probability of an algorithm
outperforming another or being in the top-k ranking in the
main body of this article. However, we provide tables in our
presentation code in which, in general, we observe the same
trend, that is, all models are affected by the deviations from
unimodality, but the MM seems more sensitive.

The unimodality requirement of the empirical distribution
of the permutations is an important assumption when using
the Bayesian performance analysis approach proposed in this
work. We may argue that, within our specific application, uni-
modality is a reasonable assumption for most of the cases,
as one can expect that the performance of the algorithms is
consistent for all problem instances. However, this is not nec-
essarily true for all scenarios, for example, some algorithms
may perform similarly in some problem instances while in
other problem instances the performance may be different.

In the next section, we develop a case study using the scores
of a real comparison of optimization algorithms on several
problem instances of the PFSP. The interest in the case study
is based on several challenges that are not considered when
using the synthetic data of the previous section: ties, repe-
titions, and deviations from unimodality. We use the results
obtained by Ceberio et al. [24] in which there are several small
problem instances in which most of the algorithms perform
similarly (we can even find ties), while, in other larger problem
instances, some algorithms are better than others. These sce-
narios are repeatedly reported in evolutionary optimization
papers.

B. Permutation Flow Shop Scheduling Problem

Since Johnson published his work on the two-machine flow
shop in 1954 [25], numerous papers have dealt with the
PFSP [26]. In this section, we compare the performance of
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Fig. 6. Probability of each algorithm being the top-ranked algorithm using the PFSP benchmark. The values represented in the black dashed horizontal line
is the ground truth obtained from all the permutations in the population of reference.

Fig. 7. Probability of each algorithm outperforming others. In the first row, we show the results obtained with the BT model and in the second with the
MM. Each plot represents the probability that the algorithm in the center outperforms the other algorithms in the outer ring of the polar coordinate system.

five state-of-the-art optimization algorithms while solving a
benchmarking test suite of the PFSP instances [27].

Algorithms in the Comparison: Following the work by
Ceberio et al. [24], we compare the following algorithms.

1) GM-EDA: Generalized mallows EDA [24].
2) HGM-EDA: Hybrid GM-EDA [24].
3) AGA: Asynchronous genetic algorithm [28].
4) VNS: Variable neighborhood search [29].
5) NVNS: New VNS [29].
Obtaining the Permutations: We combine the instances of

Taillard’s benchmark test suite with the random instances gen-
erated by Ceberio et al. [24]. In total, there are 120 problem
instances from Taillard’s benchmark augmented with 220 ran-
dom instances on which five algorithms are evaluated 20 times.
The problem instances correspond to different configurations
from 20 to 500 jobs considering 10 and 20 machines. We
obtain 340 × 20 = 6800 permutations, such as πi ∈ S5.

Comparing the Results of the Bayesian Inference: In this
case study, we assume that the permutations obtained from the
scores of the algorithms define our population of reference out
of which we obtain the ground truth of the different marginals
of interest. From this population, we obtain a sample in which
we select p = 1000 permutations to conduct the Bayesian
analysis. With the population of reference, we can accomplish
two goals: 1) to assess the results of the Bayesian analysis
by comparing the posterior summaries with the ground truth
and 2) to provide a sensitivity analysis on how the number of
samples we take while recording the algorithm’s scores affects
the uncertainty of the Bayesian analysis.

Probability of an Algorithm Being Ranked the First: Fig. 6
compares the probability of the algorithms being ranked the

first. The figure shows the empirical probability of each algo-
rithm being ranked first in the black dashed horizontal line.
This empirical probability is computed based on the number
of times each algorithm appears in the first position of the
permutations in the population of reference.

Probability of an Algorithm Outperforming Others: Fig. 7
shows the probability of each algorithm, represented in the
center of the polar coordinate system, outperforming others
represented in the outer ring. The first row of the plot shows
the results obtained with the BT model and the second row
represents the results obtained with the MM.

In general, we observe that the proposed Bayesian anal-
ysis results are in agreement with the conclusions provided
in [24]. We observe that the Bayesian inferences of the dif-
ferent marginal probabilities are able to estimate the empirical
distributions in agreement with the already available statisti-
cal conclusions of the original comparative study. In addition,
we see a clear reference to the uncertainty of the estimations
reflected in the variance of the posterior summaries of interest
providing additional information not previously available.

Among the different probabilistic models, the MM seems
to be more sensitive to the multimodal nature of the empirical
distributions. See, for example, the probability of the algorithm
HGM-EDA being the best algorithm according to the MM in
Fig. 6. Despite the strong unimodality assumption made by the
different models, in practical settings, this is not necessarily
an issue for models, such as the PL and the BT.

Sensitivity to the Number of Permutations: Fig. 8 shows
the probability of HGM-EDA to be the top-ranked algorithm
as we take different numbers of permutations to perform the
Bayesian inferences, i.e., p = {10, 50, 100, 200}. We observe
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Fig. 8. Probability of algorithm HGM-EDA to be the top-ranked algorithm using p = {10, 50, 100, 200}.

that even when we take a small number of permutations,
which corresponds to a situation in which we recorded the
scores of the algorithms with a relatively small number of
problem instances/repetitions, the Bayesian inference results
are near the ground truth. As in the previous figures, the
ground truth, which is represented in black dashed horizontal
lines, is obtained from the permutations in the population of
reference and not just the ones used for Bayesian inferences.
In this case, we obtain such ground truth based on the num-
ber of times each algorithm appears in the first position of the
permutations. As we increase the number of permutations in
the analysis, we can observe a reduction in the variance of the
posterior distribution and the uncertainty of our estimations.

V. DISCUSSION AND OUTLOOK

Using probabilistic models in permutation spaces may be
of interest to answer many questions when comparing the
performance of several algorithms. In this work, we studied
the use of the Bayesian inference of probabilistic models in
permutation spaces to compare the performance of algorithms.

The Bayesian inference of probabilistic models in permuta-
tion spaces is a tool that allows the practitioner to quantify the
uncertainty involved in the assessment of the performance of
several algorithms. However, special attention requires some
of the properties of the data under study, the assumptions made
by the different probabilistic models in permutation spaces and
the results provided by the Bayesian inference itself. In this
regard, in the specific case of the BT, PL and especially for the
MM, the strong unimodality assumption is an important issue
to be considered by the practitioner. That is why assessing
whether the empirical distribution of the permutations derived
from the comparison data holds this property should be an
important step before proceeding to perform the Bayesian
inference with these models. We make this observation in
the same fashion that some parametric tests require to verify
that the data follow a Gaussian distribution. In this direction,
specific tests to verify whether an empirical distribution on per-
mutation spaces is unimodal are desired though none is known
to the current authors. Another important aspect to be consid-
ered is that the marginal probability estimations provided by
the studied Bayesian inference framework should not be taken
as sufficient evidence that some algorithms perform better than
others without carefully considering the application area.

We focused our attention on a few marginals of interest that
can be obtained for the different probabilistic models. When
the number of algorithms is small, the naive computation of
such marginal probabilities should not be an issue, however,

when this is not the case, we may face a high computational
complexity. In such scenarios, closed-form expressions for the
different marginal probabilities may be of interest.

In future works, exploring different probabilistic models for
the Bayesian performance analysis is motivated by the fact
that different models make different assumptions about the
distribution of the data. In addition, while some closed-form
expressions of the different marginals may not be available
for some models, for others we may be able to obtain such
marginal probabilities easily. Future areas of research may
focus on how to visualize the marginal probabilities and
explore applications in which some of them provide better
insights into the performance of the different algorithms.
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