
Julia: A competitive high-level choice for performance portability in

HPC?

Jim M. R. Teichgräber

June 26, 2022

Abstract

Most attempts at achieving performance portability in high performance computing use low level languages
such as C, C++ and Fortran. A number of performance portability approaches based on these languages
have been developed, such as OpenCL™, SYCL™, Kokkos and OpenMP®. The Julia language aims to provide
high-level language convenience, while delivering C-like performance, despite its managed runtime environment
and dynamic type system.

We set out to compare Julia to existing performance portability approaches to determine if it is a
competitive choice for HPC. We examine Julia’s compilation process, syntax, idioms and package ecosystem to
find what makes it appealing. We also study its performance in inter-node communication using the Message
Passing Interface. Regarding intra-node workloads, we compare Julia’s performance in memory-bandwidth
bound as well as compute bound applications to that of the conventional approaches. We conclude that Julia
can, in general, compete with the existing performance portable approaches to high performance computing.

1 Introduction

Dynamic programming languages such as Julia con-
tinue to be preferred for developing algorithms, solv-
ing problems and analyzing data [1]. Performing these
tasks in lower-level languages such as C, C++ and
Fortran requires more work and does not offer the
same level of productivity [1]. Mathematical con-
structs map well to high-level dynamic languages,
which often do not achieve the same performance
as low-level languages. These, in turn, feature pro-
gramming constructs which map well to the underly-
ing hardware [2]. To achieve maximum performance
in areas such as high performance computing, code
developed in languages such as MATLAB®, R and
Python has often been translated to highly perfor-
mant lower-level languages [1]. Julia aims to provide
a high-level dynamic language similar in nature to
those mentioned above, but capable of achieving the
performance levels of C or Fortran [1].

Julia uses a just-in-time (JIT) compilation
model [3], which counteracts some of the overhead
that a dynamic language with a managed runtime en-
vironment brings with it [4]. Julia also makes use of
the LLVM compiler toolchain [5] for producing opti-
mized machine code at runtime. It is also designed
to enable easy translation of mathematical problems
into code, as well as ease developer cooperation and
code reuse through its approach to package manage-
ment. JIT compilation is also related to performance
portability in that its entire goal is to generate ma-
chine specific code at runtime, ideally independent of
where it is run. The JIT paradigm in itself is noth-

ing new and precedes the performance portability ap-
proaches that Julia will be compared to. This article
thus also evaluates the viability of JIT compilation
as an approach to performance portability, using the
example of Julia.

To see if Julia’s design decisions result in good
performance in comparison to more conventional ap-
proaches to performance portable HPC programming,
we will report on Julia’s performance in serveral
benchmarks, using results obtained in related work.

Julia’s intra-node performance will be examined in
the compute bound miniBUDE [6, 7] and memory-
bandwidth bound (memory bound) BabelStream [8]
benchmarks. The BabelStream benchmark is an ex-
tension of the well known STREAM benchmark [9].

Inter-node performance will be analyzed in terms of
communication performance using the Julia MPI.jl
wrapper [10] and the Open MPI C implementa-
tion [11] of theMessage Passing Interface (MPI) stan-
dard [12, 13].

2 Background

2.1 Julia’s Compilation Process

As mentioned before, Julia is compiled just-in-time,
meaning that the compiler generates machine code at
runtime of the program. Compilation happens in mul-
tiple stages. First, Julia source code is parsed into
an abstract syntax tree (AST), then it is simplified
(“lowered”), meaning higher level language features
get converted into more verbose Julia code. Following
this, the compiler infers types of expressions, wherever

1



possible. In code generation this lowered form of Julia
code is converted into a portable intermediate repre-
sentation (IR): LLVM [5] IR. LLVM then takes care
of optimization in various passes, before translating
the IR into platform specific machine code. [14, 4, 1]

Please note that this is a simplified view of
the compilation process and that Julia’s managed
runtime environment can make a heuristics based
decision to not JIT compile code at all and interpret
it instead [14]. As this is not particularly relevant for
HPC, since performance critical code should always
be JIT compiled by the runtime environment, we will
not look further into this.

As a language with a dynamic type system al-
lowing arbitrary runtime type checks and dynamic
multiple dispatch, Julia needs a managed run-
time [15]. The managed runtime needs to take care
of allocating sufficient memory for dynamically typed
variables and selecting which branch of a multiple
dispatch method is run based on the runtime type.

But with the use of type inference, the compiler can
statically allocate stack memory at compile time1, if
a section of code is perfectly typed by inference [4, 1].
This reduces the need for the environment or the JIT
compiler to interfere with program execution. Sim-
ilarly, in cases where the types of method calls are
known at compile time, the compiler can select an
appropriate method, and thus avoid dynamic multi-
ple dispatch at runtime. These effects become even
more pronounced when considering, that the compiler
is realistically able to perfectly type the majority of
all expressions [1].

The managed runtime is therefore only necessary
for dynamic code that needs recompilation or evalu-
ation at runtime and specific language features such
as garbage collection [4]. This means that the ad-
vantages of dynamic languages can be used in Julia
code which is not performance critical. However, in
the carefully written parts of the program that do re-
quire peak performance, it is possible to maintain the
performance of statically compiled languages [1].

2.2 Idiomatic Julia

As a high level dynamic language, Julia allows for
concise and expressive syntax, where lower-level lan-
guages like C need more explicit code [1]. It has be-
come standard for code in high performance comput-
ing and technical computing to use a two-tiered ar-
chitecture for writing code. Higher-level logic is ex-
pressed in a dynamic language such as R or Python
and performance critical sections are written in C or
Fortran [1]. Instead of programming in two different
languages, Julia allows for high performance and con-
venience:

1This is specifically referring to the time in which the JIT
compiler acts

1. The Julia runtime environment takes care of
memory management. This not only im-
proves programmer productivity, but also pre-
vents memory related bugs which can often be
hard to track down [2]. As explained in subsec-
tion 2.1, the JIT compiler can take care of effi-
ciently allocating memory on the stack in many
situations, while dynamic memory allocations at
runtime are still possible if needed. [4]

2. Array bounds checking is done by default. This
improves code safety as well as convenience for
the programmer, though it can be circumvented
with the use of the @inbounds macro to ensure
maximum performance. [16]

3. Unicode symbols can be used to translate math-
ematical descriptions of algorithms more easily
into code. This means constants or functions
using greek letters such as ∆ or Φ can be used
in source code. LATEX symbols can be used too
and are often defined as aliases to existing func-
tions or operators. For example ≥ can be used
instead of >= and ∈ serves as an alias for the in
keyword. Most Julia programming environments
enable the use of the LATEX \ commands plus a
Tab to type these special characters. [17]

4. Type inference allows for convenient and readable
code, i.e. ∆ = 1.5 can be specified without any
explicit type annotation, while not compromising
on performance. [18]

5. Operators and functions can be defined on more
complex types such as vectors and matrices.
Adding two vectors a and b is simply expressed
as a+b. Solving the system of linear equations
Ax = b for x can be done with A\b [18]. The
resulting LLVM IR and assembly of such an op-
eration can be inspected using the @code llvm

and @code native macros. This reveals that Ju-
lia emits vectorized code when appropriate. On
x86 derived architectures, instructions from the
Streaming SIMD Extensions (SSE) and Advanced
Vector Extensions (AVX) instruction set families
are used.

6. The @threads and @simd macros allow for fine
tuning of multi-threading and vectorization be-
havior. @threads in particular enables OpenMP-
like parallelization of for loops:

Figure 1: Comparison of Julia @threads (left)
against C++ OpenMP parallelized for loop
(right).
Taken from [2]

2



2.3 Package Ecosystem

In addition to Julia’s syntax, its package ecosystem
encourages developers to exchange and reuse code
to easily build software. For HPC it is particu-
larly interesting, as it encourages API uniformity:
The CUDA.jl, AMDGPU.jl, oneAPI.jl and KernelAb-
stractions.jl (KA.jl) packages, all developed by the
JuliaGPU group [19], provide functionality to pro-
gram GPUs. They all share similar APIs for re-
trieving information about the environment that the
compute-kernel is executed in as well as modifying
said environment, as can be seen in Table I. This
enables developers to adapt code to different GPU
architectures with relative ease. [2]

In particular, CUDA.jl and its predecessor CUDA-
Native.jl base their compilation processes Julia’s own,
without needing to change the Julia compiler itself [4].
CUDANative.jl, for instance, reuses large parts of the
original Julia compiler and augments its functionality
through extension interfaces, which hook into differ-
ent parts of the compilation process to tailor it to
generating GPU device code. For example, excep-
tions can be disallowed through the use of so-called
CodegenParam-parameters, as they do not generally
make sense in device code. [4] Because Julia uses
LLVM to generate CPU code in the very last step
of the compilation process, LLVM can also be used
to convert the IR into machine code for GPU archi-
tectures instead. This means that there is no need to
distribute a separate GPU compiler with the package.
In the case of CUDANative.jl, the LLVM PTX back-
end [20] included with the Julia LLVM distribution,
can generate well performing PTX code for CUDA
devices from LLVM IR [4].

This makes it possible to distribute new accelerator
device packages through the Julia package manager,
independent of the Julia implementation that is used.
In their work on CUDANative.jl, Besard et al. have
also created the LLVM.jl package to allow for high-
level interactions with LLVM, internally using Julia’s
Foreign Function Interface (FFI) to interface with the
LLVM C API. [4]

As a result of this work, accelerator support for a
particular architecture or device can be implemented
compactly. CUDANative.jl itself only requires about
1500 lines of code. Thus, software portability is
encouraged by design: firstly through the use of the
LLVM compiler toolchain, abstracted away by the
LLVM.jl package and secondly by integrating into
the main Julia compiler. [4]

There are also additional benefits to using this
heavily interconnected compiler architecture for de-
vice code. CUDA and host calls to a function are
only distinguished by the use of the @cuda macro,
which also means that dynamic code can be written
and efficiently executed on the GPU. Because there is
no differentiation between device code and host code,

much of the Julia standard library can be used in writ-
ing device code and device code can be reused on the
host.

2.4 BabelStream and miniBUDE

In order to measure intra-node performance, the vari-
ations on the STREAM and miniBUDE benchmarks
will be used.

A. BabelStream: The STREAM benchmark [9]
consists of 4 operations which are meant to emu-
late typical vector operations in HPC codes. The
specific benchmark that will be used is the Babel-
Stream benchmark [8] which additionally implements
the dot product to benchmark a reduction opera-
tion [2].
The benchmark is best described by the pseudocode
in Algorithm 1.

Algorithm 1 BabelStream kernels, taken from [2]

procedure COPY(A[n], C[n], n)
for i← 0, n do

C[i]← A[i]

procedure MUL(A[n], C[n], scalar, n)
for i← 0, n do

C[i]← scalar ∗A[i]

procedure ADD(A[n], B[n], C[n], n)
for i← 0, n do

C[i]← A[i] +B[i]

procedure TRIAD(A[n], B[n], C[n], scalar, n)
for i← 0, n do

C[i]← A[i] + (scalar ∗B[i])

procedure DOT(A[n], B[n], scalar, n)
for i← 0, n do

R← R+ (A[i] ∗B[i])
return R

The pseudocode highlights the memory bound na-
ture of the benchmark, the computations themselves
are trivial, the number of array accesses is much more
significant.

B. miniBUDE: The Bristol University Docking
Engine (BUDE) [7] is a highly compute bound molec-
ular dynamics based application. For benchmarking
compute bound applications, the miniBUDE [6, 2]
benchmark, which is derived from the full scale BUDE
application will be used. This benchmark requires
trigonometric function evaluations, square roots and
absolute values over multiple iterations [2].

3 Performance Results

To measure the performance of Julia in comparison
to other performance portability frameworks and ap-
proaches, we will report on Julia’s intra-node perfor-
mance in compute bound as well as memory bound

3



Table I
Julia GPU Kernel API Cross-Reference

Taken from [2]

applications. In doing so, we will compare CPU and
GPU performance, to determine if Julia is able to
perform well in highly heterogeneous systems. On
the CPU side, we will compare the standard Julia
compiler and the KA.jl package against OpenMP and
Kokkos. As for GPUs, depending on the architec-
ture, CUDA or HIP, CUDA.jl or AMDGPU.jl and
OpenCL, Kokkos and KA.jl will be compared. Specif-
ically, the results of Lin et al. [2] will be presented1.
Please note that the results that Lin et al. obtained

on consumer CPUs and GPUs will not be consid-
ered, as they are not relevant for HPC. This also fully
excludes the results comparing SYCL, OpenCL and
oneAPI.jl on Intel Integrated Graphics GPUs.

We will analyze MPI performance as a measure
for communication performance in highly distributed
inter-node workloads. More specifically, we will com-
pare the MPI.jl package [10] to the Open MPI [11]
C library, using the results of Hunold et al. [21] who
have analyzed their performance in a subset of the
ReproMPI [22, 23] benchmark suite1. It should be
noted that, while Open MPI is an implementation
of the MPI Standard, MPIl.jl is merely a wrapper,
which can use a number of different MPI implementa-
tions, including Open MPI. In this case, MPI.jl using
Open MPI will be compared against the direct use of
Open MPI functions.

3.1 Intra-Node Performance

The results of the compute bound miniBUDE bench-
mark will be examined first. Afterwards, we will ana-

1A description of the exact benchmark environment and
setup can be found in the respective paper

lyze performance in the memory bound BabelStream
benchmark, before continuing on to the communica-
tion performance of inter-node applications.

3.1.1 Compute bound — miniBUDE

A. CPU: On the x86 architectures Julia was of-
ten able to produce vectorized code using the AVX2
instruction set, although it was not yet capable of
emitting AVX512 instructions. This resulted in a per-
formance drop compared to OpenMP and Kokkos on
the AVX512 capable architectures and thus a drop in
the average performance, as can be seen in Figure 2a.
If AVX512 instructions were manually forbidden for
OpenMP and Kokkos, Julia closed the gap, result-
ing in very similar performance. The exception to
this was the AMD EPYC platform, where Julia per-
formed 15% worse than both OpenMP and Kokkos.
As there was almost no difference between the LLVM
IR emitted by Julia in comparison to that emitted by
OpenMP, this disparity could not be explained. [2]

On ARM, on the other hand, Julia performed no-
tably worse than both OpenMP and Kokkos, los-
ing out by about 59%. It is noteworthy that both
OpenMP and Kokkos only reached about 7-25% of
the peak FLOP/s possible on this architecture, which
is far lower than the approximately 40% achieved on
the x86 architectures. Julia attained about 2-12% on
ARM, while reaching about 30% to 35% on x86. [2]

KA.jl performed 5 to 10 times worse than all the
other approaches in all scenarios, which is to be ex-
pected, as the documentation states that execution
on CPUs is currently not a priority [2].

Julia scaled similarly to the OpenMP and Kokkos

4



O
p
en

M
P

K
o
k
k
o
s

J
u
li
a

K
A
.j
l

O
p
en

M
P

K
o
k
k
o
s

J
u
li
a

K
A
.j
l0

20

40

x86 ARM

41.7

17.3

42.8

16.45

31.95

7.16.4
2.95

%
p
ea
k
F
L
O
P
/s
,
h
ig
h
er

is
b
et
te
r

(a) Averaged miniBUDE CPU results

C
U
D
A

O
p
en

C
L

K
o
k
k
o
s

C
U
D
A
.j
l

K
A
.j
l

H
IP

O
p
en

C
L

K
o
k
k
o
s

A
M
D
G
P
U
.j
l

K
A
.j
l0

20

40

Nvidia AMD

39.95

9.35

33.45

15.25

25.6

6.75

31.95

16.65

21.35

13.8

(b) Averaged miniBUDE GPU results

O
p
en

M
P

K
o
k
k
o
s

J
u
li
a

O
p
en

M
P

K
o
k
k
o
s

J
u
li
a

0

20

40

60

80

x86 ARM

55.98

68.58

55.72

68.22

55.86

66.09

%
p
ea
k
m
em

o
ry

b
an

d
w
id
th
,
h
ig
h
er

is
b
et
te
r

(c) Averaged BabelStream CPU results

C
U
D
A

O
p
en

C
L

K
o
k
k
o
s

C
U
D
A
.j
l

K
A
.j
l

H
IP

O
p
en

C
L

K
o
k
k
o
s

A
M
D
G
P
U
.j
l

K
A
.j
l0

20

40

60

80

Nvidia AMD

85

72.46

85.3

75
71.46 71.1

84.03

57.2

70.84

56.9

(d) Averaged BabelStream GPU results

Figure 2: Performance results, all plots adapted from [2]. All results are averages over all platform specific
results. The BabelStream results are also averaged over the performance of the five different kernels seen
in Algorithm 1.

implementations, the performance gap expanding lin-
early with the number of cores [2]. This highlights
multithreading support for Julia.

B. GPU: On the Nvidia architectures (see Fig-
ure 2b), the native CUDA implementation of
miniBUDE is ahead of the portable approaches by
about 5% to 10% of the theoretical peak FLOP/s,
20% to 25% in relative terms. CUDA.jl performs
slightly better than Kokkos and slightly worse than
OpenCL. Depending on the architecture, CUDA.jl
matches OpenCL in some scenarios, while staying be-
hind by about 14% in others. KA.jl performed just
behind Kokkos. [2]

AMDGPU.jl mostly outperformed OpenCL, HIP
and Kokkos on the AMD architectures. OpenCL

can still compete with AMDGPU.jl, only lagging be-
hind slightly. HIP and Kokkos are about 50% to
70% slower than AMDGPU.jl. KA.jl also performs
well, matching OpenCL and beating out HIP and
Kokkos. [2]

3.1.2 Memory bound — BabelStream

A. CPU: Due to a bug in KA.jl, it was excluded
from the comparison [2].

When using all available CPU cores, the perfor-
mance of OpenMP, Kokkos and Julia was identi-
cal as can be seen in Figure 2c. Julia did however
scale worse than the other two frameworks. The au-
thors attribute this to Julia’s inherent thread affin-
ity [24] behavior: If OpenMP and Kokkos use the
OMP PROC BIND=close pragma, they scale very simi-

5



larly to Julia, while OMP PROC BIND=spread yields the
best scaling results. [2]

B. GPU: On the Nvidia architectures, CUDA.jl
reaches the performance levels of the native CUDA
implementation. OpenCL does so too, while both
Kokkos and KA.jl lag behind slightly (see Fig-
ure 2d). [2]
In the case of the AMD architectures, KA.jl and

AMDGPU.jl yield identical results, which suggests
that the mapping from KA.jl to AMDGPU.jl is very
close. Both packages perform about 20% worse than
OpenCL, HIP and Kokkos, in contrast to the results of
the compute bound benchmark. The Julia packages
perform about 50% worse in the Dot kernel bench-
mark, which stands out as it is the only kernel in Ba-
belStream performing a reduction operation. The Dot
kernel results are not explicitly shown in Figure 2d,
as they are integrated into the average results.

The authors attribute this overall suboptimal per-
formance to the immaturity of the AMDGPU.jl pack-
age, which is still in the early stages of develop-
ment. [2]

3.2 Inter-Node Performance

Julia version 1.4.0 (MPI.jl 0.14.3) showed nearly iden-
tical performance to Open MPI (C) in almost all sce-
narios. The only exception to this was the case of the
MPI Allreduce [13] method, which showed significant
slowdown in MPI.jl for message sizes above 10kB. Per-
formance was about 1.5 to 2 times slower than in the
case of Open MPI, depending on the exact message
size. Previous versions of Julia and the MPI.jl pack-
age performed worse, taking between 2 and 2.5 times
longer than C. [21]
The MPI Allreduce method is a non-rooted collec-

tive operation, in which all processes in all nodes of
the cluster perform an operation on their local data
and contribute their result to the global result [21].
Upon analyzing the distribution of the running

times of MPI.jl and Open MPI over multiple runs
of the MPI Allreduce benchmark, the authors found
highly variant running time distributions for MPI.jl
for larger message sizes, whereas the direct use of
Open MPI in C was fairly consistent in its running
times across message sizes, as shown in Figure 3.
The root cause of this inconsistency could not be ex-
plained. [21]

4 Discussion

4.1 Performance

In general, Julia’s best packages and implementa-
tions do not lag far behind the other performance
portable approaches in intra-node performance. In
most memory bound applications there is no per-
formance loss due to abstractions provided by Julia.

Compute bound applications are still dominated by
first party solutions such as CUDA, but Julia can
generally compete with other performance portable
solutions. It does lag behind slightly in CPU perfor-
mance in these applications, due to the compiler not
emitting AVX512 instructions.

Except for the anomaly in the MPI Allreduce case
discussed in subsection 3.2 Julia’s MPI performance
was on par with that of the direct use of Open MPI,
making it competitive in inter-node communication
use cases.

4.2 Lines of code

In general one can assume to gain a significant reduc-
tion in the amount of lines of code (LOC) when using
Julia compared to lower-level languages and frame-
works. This is backed up by the work of Besard et
al. [4] who implemented CUDANative.jl, the prede-
cessor to the CUDA.jl package. In their benchmarks
they compared native CUDA C code to equivalent
kernel and host code written in Julia and found an
overall reduction in lines of code of about 32%. Still
using low level semantics, they achieved an average re-
duction of 8% in GPU device code. The lines of host
code were reduced by about 38%, as it was possible to
use more high level features there, without compro-
mising on performance in device code, as described
in subsection 2.1. The exact reductions in LOC can
be examined in Figure 4.

Figure 4: Lines of code reduction CUDA C vs CUDA-
Native.jl Julia package in various benchmarks, taken
from [4]

The authors also noted that programming device
code in a low-level style of Julia was more comfort-
able compared to CUDA C, due to various Julia lan-
guage features such as dynamic types and checked
arithmetic [4].

4.3 Single source portability

Of the Julia packages that were benchmarked, only
KA.jl can provide true single source portability. KA.jl
is also the slowest package throughout and cannot
compete in CPU or GPU applications, whether com-
pute bound or memory bound. Porting implementa-
tions in GPU architecture specific packages such as

6



Figure 3: Histogram of running times over multiple runs of the MPI Allreducemethod, broken down by message
size, mean values are marked in red, taken from [21]

CUDA.jl and AMDGPU.jl usually only requires API
call substitutions using a table like Table I, because
the Julia package ecosystem encourages a uniform
approach to accelerator programming, as described
in subsection 2.3. Thus, performance portable pro-
gramming for HPC is possible in Julia, but still re-
quires some manual effort. [2]

5 Conclusion

We compared Julia’s performance to that of a number
of other performance portability approaches, includ-
ing OpenCL, Kokkos, OpenMP and HIP in a range
of applications. We evaluated performance in the
compute bound miniBUDE benchmark [6, 7] and the
memory bound BabelStream benchmark [8], as well
as communication performance using the Julia MPI.jl
wrapper and the Open MPI C implementations of the
MPI standard [12, 13]. Furthermore, we detailed how
Julia’s design and syntax, compilation process and
package management make it appealing for writing
mathematical and technical code, and enable conve-
nience while maintaining comparable performance.
We conclude that Julia can generally keep up

with the performance of other performance portabil-
ity frameworks. Its portability is still confined to the
specific GPU package used, but porting Julia kernel
code to different architectures is simplified by the API
uniformity of the different GPU packages. As these
integrate tightly with the Julia compilation process
and LLVM, it can be presumed that portability to fu-
ture architectures will be possible in the same way it
is now.

Julia thus offers a convenient, high-level language,
designed for performance and being able to deliver on
that promise. High performance computing in Julia
is possible with good performance across architectures
and nodes, but its portability can still be improved.

7



References

[1] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman. Julia: a fast dynamic language for technical computing.
arXiv preprint, 2012. doi: 10.48550/ARXIV.1209.5145.

[2] W.-C. Lin and S. McIntosh-Smith. Comparing Julia to Performance Portable Parallel Programming Models for
HPC. In 2021 International Workshop on Performance Modeling, Benchmarking and Simulation of High Perfor-
mance Computer Systems (PMBS), pages 94–105, 2021. doi: 10.1109/PMBS54543.2021.00016.

[3] J. Aycock. A Brief History of Just-in-Time. ACM Comput. Surv., 35(2):97–113, June 2003. issn: 0360-0300. doi:
10.1145/857076.857077.

[4] T. Besard, C. Foket, and B. De Sutter. Effective extensible programming: unleashing Julia on GPUs. IEEE
Transactions on Parallel and Distributed Systems, 2018. issn: 1045-9219. doi: 10.1109/TPDS.2018.2872064.
arXiv: 1712.03112 [cs.PL].

[5] C. Lattner and V. Adve. LLVM: a compilation framework for lifelong program analysis & transformation. In
International Symposium on Code Generation and Optimization, 2004. CGO 2004. Pages 75–86, 2004. doi: 10.
1109/CGO.2004.1281665.

[6] A. Poenaru, W.-C. Lin, and S. McIntosh-Smith. A Performance Analysis of Modern Parallel Programming Models
Using a Compute-Bound Application. In 36th International Conference, ISC High Performance 2021, Frankfurt,
Germany, 2021.

[7] S. McIntosh-Smith, J. Price, R. B. Sessions, and A. A. Ibarra. High performance in silico virtual drug screening
on many-core processors. The International Journal of High Performance Computing Applications, 29(2):119–134,
2015. doi: 10.1177/1094342014528252. PMID: 25972727.

[8] T. Deakin, J. Price, M. Martineau, and S. McIntosh-Smith. Evaluating attainable memory bandwidth of par-
allel programming models via BabelStream. International Journal of Computational Science and Engineering,
17(3):247–262, Special issue, 2018. doi: 10.1504/IJCSE.2018.095847.

[9] J. D. McCalpin et al. Memory bandwidth and machine balance in current high performance computers. IEEE
computer society technical committee on computer architecture (TCCA) newsletter, 2(19-25), 1995.

[10] MPI.jl. url: https://juliaparallel.org/MPI.jl/stable/.

[11] Open MPI. url: https://www.open-mpi.org/.

[12] The MPI Forum. url: https://www.mpi-forum.org/ (visited on June 5, 2022).

[13] M. Snir, W. Gropp, S. Otto, S. Huss-Lederman, J. Dongarra, and D. Walker. MPI – the Complete Reference: the
MPI core, volume 1. MIT press, 1998, pages 178–180.

[14] Julia Developer Documentation on Eval of Julia Code. url: https://docs.julialang.org/en/v1/devdocs/eval/
(visited on May 20, 2022).

[15] Julia Manual on Types. url: https://docs.julialang.org/en/v1/manual/types/#man- types (visited on
May 18, 2022).

[16] Julia Developer Documentation on Bounds checking. url: https://docs.julialang.org/en/v1/devdocs/
boundscheck/ (visited on May 26, 2022).

[17] Julia Manual on Unicode input. url: https://docs.julialang.org/en/v1/manual/unicode-input/ (visited on
May 26, 2022).

[18] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: a fresh approach to numerical computing. SIAM
review, 59(1):65–98, 2017.

[19] Julia GPU Group. url: https://juliagpu.org/ (visited on May 26, 2022).

[20] User guide for the LLVM NVPTX Back-end. url: https://www.llvm.org/docs/NVPTXUsage.html (visited on
June 4, 2022).

[21] S. Hunold and S. Steiner. Benchmarking Julia’s Communication Performance: Is Julia HPC ready or Full HPC? In
2020 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems
(PMBS), pages 20–25, 2020. doi: 10.1109/PMBS51919.2020.00008.

[22] ReproMPI Benchmark Suite. url: https://github.com/hunsa/reprompi (visited on May 26, 2022).

[23] ReproMPI Benchmark Suite, Julia port. url: https://github.com/sebastian-steiner/reproMPI.jl (visited on
May 26, 2022).

[24] Wikipedia contributors. Processor affinity — Wikipedia, the free encyclopedia. url: https://en.wikipedia.org/
w/index.php?title=Processor_affinity&oldid=1027552885 (visited on June 4, 2022).

8

https://doi.org/10.48550/ARXIV.1209.5145
https://doi.org/10.1109/PMBS54543.2021.00016
https://doi.org/10.1145/857076.857077
https://doi.org/10.1109/TPDS.2018.2872064
https://arxiv.org/abs/1712.03112
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1177/1094342014528252
https://doi.org/10.1504/IJCSE.2018.095847
https://juliaparallel.org/MPI.jl/stable/
https://www.open-mpi.org/
https://www.mpi-forum.org/
https://docs.julialang.org/en/v1/devdocs/eval/
https://docs.julialang.org/en/v1/manual/types/#man-types
https://docs.julialang.org/en/v1/devdocs/boundscheck/
https://docs.julialang.org/en/v1/devdocs/boundscheck/
https://docs.julialang.org/en/v1/manual/unicode-input/
https://juliagpu.org/
https://www.llvm.org/docs/NVPTXUsage.html
https://doi.org/10.1109/PMBS51919.2020.00008
https://github.com/hunsa/reprompi
https://github.com/sebastian-steiner/reproMPI.jl
https://en.wikipedia.org/w/index.php?title=Processor_affinity&oldid=1027552885
https://en.wikipedia.org/w/index.php?title=Processor_affinity&oldid=1027552885

	Introduction
	Background
	Julia's Compilation Process
	Idiomatic Julia
	Package Ecosystem
	BabelStream and miniBUDE

	Performance Results
	Intra-Node Performance
	Compute bound — miniBUDE
	Memory bound — BabelStream

	Inter-Node Performance

	Discussion
	Performance
	Lines of code
	Single source portability

	Conclusion

