
Performance Portability for HPC Applications through the RAJA

abstraction layer

Philipp Pindl
philipp.pindl@tum.de

Technical University of Munich
Munich, Germany

May 2022

Abstract This paper gives a brief overview of the
core concepts behind the RAJA abstraction layer and
how it can be used to write performance portable
code. Multiple examples, where RAJA was employed
as a means of making HPC applications portable are
considered along with performance measurements.
These results are used to evaluate RAJAs ability to
make code portable. Additionally, we then discuss
the ease of portability, as well as in how far RAJA
impacts the performance of ported applications.

1 Introduction

In recent times various accelerators, like GPUs, have
become increasingly common in today’s HPC archi-
tectures, like in the currently leading supercomputer
FRONTIER [1]. Each of FRONTIER’s nodes has
4 AMD GPUs in addition to a CPU for tasks like
machine learning [2]. However current HPC archi-
tectures use multiple GPUs from different vendors.
The majority of used GPUs are manufactured by
NVIDIA, AMD, and Intel. However each of these
GPUs has multiple frameworks and tools for pro-
gramming them. This faces developers with the prob-
lem of writing code that remains portable across mul-
tiple architectures, that ideally maintains its perfor-
mance even when ported. Code for HPC architec-
tures is usually complex and can contain on the scale
of 106 lines of code, like ALE3D [3], a physics simu-
lation tool. Having to rewrite an entire codebase of

this size each time hardware changes take place, will
be time consuming in addition to downtimes during
which the code is unable to run. This slows down
research process and in turn delays the publishing
of results. In order to address this problem several
performance portability frameworks, such as Kokkos
and RAJA, have emerged in the last few years, which
promiss to achieve portability across GPU and CPU
architectures. In this paper we will consider the
RAJA framework in detail. RAJA was developed
by the Lawrence Livermore National Laboratory fur-
ther referred to as LLNL and used to prepare vari-
ous of their applications for the arrival of El Capi-
tan [4] which is projected to be the fastest supercom-
puter at the time of its installation in 2023. These
ported applications include the ARES Multiphysics
code, ALE3D, and the neutral particle transport code
ARDRA.

2 Overview of RAJA

RAJA is an abstraction layer for C++ code that
comes in the form of multiple software libraries. It
has had its first GitHub release in 2016 and has
been actively growing on the site since [5]. RAJA
seeks to make a single-source code performance
portable across many heterogenous HPC architec-
tures, through parallelizing loops on different plat-
forms. To achieve this multiple backends are used
to compile the C++ program for a corresponding ar-

1

chitecture. Most notably RAJA offers support for
CUDA, HIP and SYCL which are used for running
code on NVIDIA, AMD and Intel GPUs respectively.
Furthermore, parallel CPU models are supported via
the SIMD and OpenMP backends. This resolves the
need for programmers to maintain multiple versions
of their source code each using CUDA or HIP directly
and targeting a specific GPU or CPU. Especially for
large HPC applications which contain on the scale
of 106 lines of code this involves a lot of superfluous
work. [6]

To accomplish this RAJA offers building blocks to
abstract standard C++ loops. This approach leaves
the loop body itself unchanged thus keeping the nec-
essary source code changes to a minimum. More
specifically a loop can be expressed in terms of an
Execution Policy, an Iteration Space, and a Traversal
Template. We now elaborate on each of these con-
cepts further using an example. This simple C++
loop just adds a scalar multiple of the vector b to the
vector a:

for (int i = 0; i < N; ++i)

{

a[i] += c * b[i];

}

The equivalent RAJA version looks like this:

using namespace RAJA;

RangeSegment seg (0, N);

forall<loop_exec> (seg, [=] (int i) {

a[i] += c * b[i];

});

The first thing to note is that the loop body stays
the same the only difference being the conversion to a
C++ lambda, which takes the loop index as a param-
eter. We call this lambda the lambda kernel body. A
kernel in the context of GPUs is the loop body of a
traditional loop. In the following the different com-
ponents of the RAJA implementation are explained:

1. Execution Policy: In our case the loop exec ex-
ecution policy is used. An execution policy most
importantly describes which execution backend
and execution platform to use along with infor-

mation for compile time checking. Execution
policies can be defined by the users themselves.
However, the RAJA library already defines many
commonly used Execution Policies. In our case
loop exec describes a sequential policy for the
CPU that does not force any optimization like
SIMD but tries to incorporate them.

2. Iteration Space: Iteration spaces define the
range of the loop as a set of loop indices. Here
seg is the iteration space used for the loop con-
taining the indices from 0 to N − 1.

3. Traversal Templates: Traversal templates pro-
vide a description for how the lambda is applied
for each index in the iteration space. In our case
forall resembles a classic for loop where the
lambda is applied once for every index. How-
ever, RAJA also provides reduction and scan op-
erations. [7]

It is also worth mentioning that RAJA offers ab-
stractions for memory called views which provide dif-
ferent layout options and multi-dimensional index-
ing. Some of these layout options can be used for
enhanced performance by automatically permuting
data. Along with views there are two complemen-
tary libraries for RAJA, namely Umpire and CHAI,
which also deal with memory management. Umpire
offers a unified approach for (de)allocating, moving,
and copying memory, as well as memory pools and
strategies for allocation thus providing high memory
performance [8]. CHAI on the other hand comes with
a managed array type that is responsible for automat-
ically copying memory between memory spaces, like
the CPU and GPU. [6]

3 Performance and Portability
asessment

Now that the core principle of the workings of RAJA
have been established, we will take a look at some
examples where RAJA has been used as an abstrac-
tion layer to achieve portability. Specifically, we will
use the RAJA Performance Suite [9], SW4 and the
implementation of a particle-in-cell code (PIC) with

2

the RAJA abstraction layer. For each of these we will
first describe the methodology that were used and the
measurements that were taken. At the end of each
section we will then discuss the difficulties that ac-
companied porting the code and the resulting imple-
mentation in terms of portability, if such information
is present in each case. To conclude, we analyze the
performance deviation of the RAJA implementations
from non portable approaches or the base implemen-
tation depending on what data is available for each
study.

3.1 RAJA Performance Suite

The RAJA Performance Suite contains a collection of
kernels that can be used to assess the performance of
a RAJA implementation and compare it to reference
implementations, which are for example written in
CUDA or OpenMP. In a study from 2019 the LLNL
used this suite to compare a Sequential, OpenMP
and CUDA implementations to their corresponding
RAJA generated counterparts. All variants were ex-
ecuted on several HPC architectures which contain
between 20 and 98304 nodes. It should be noted
that data allocation/deallocation, initialization and
necessary transfers are not included in the runtime
measurements. Figure 1 shows the performance dif-
ference for each variant against its reference imple-
mentation as a histogram. [7]

A spike at the 0% difference mark is apparent for
all three variants, thus indicating that for most ker-
nels the RAJA and reference implementations per-
form about equally well. OpenMP displays a no-
table increase in variance compared to both other
variants. The LLNL study concluded this might be
due to the C++ compilers having difficulties optimiz-
ing OpenMP pragmas together with C++ template
abstractions which RAJA uses. Overall, in 55% of
all cases the performance of the RAJA implemen-
tation was found to be within 10% of the reference
implementation’s performance. The paper does not
mention any difficulties in the process of rewriting
the applications in RAJA. Therefore, we can draw no
conclusions on the ease with which portability can be
achieved. [7]

3.2 PIC code

In a study from 2019 the “Max-Planck-Institut für
Plasmaphysik” together with the “Max Planck Com-
puting and Data Facility” used the Kokkos [10] and
RAJA frameworks to develop an HPC application
for solving a problem from the plasma physics do-
main. This problem consists of solving the Vlasov-
Maxwell [11] system of equations using a Particle-In-
Cell method [12]. The Kokkos framework is a simi-
lar framework to RAJA and strives to make applica-
tions performance portable as well, by using the same
concepts as RAJA. The performance of both imple-
mentations was then compared against each other
and against OpenMP, OpenACC [13] and a Open-
MP/Kokkos hybrid variant. The performance of the
different implementations was measured on a multi-
core CPU socket and a single GPU. To run on a multi
core CPU RAJA was compiled with the OpenMP
backend. The results are shown in Figure 2 and 3
respectively.

In this paper Artigues et al. report that a two-
step process was necessary for refactoring: Firstly,
arrays were replaced with RAJA views. Secondly, the
loop bodies were moved into C++ lambdas and the
for loop was adjusted by using the forall traversal
template and iteration spaces. It is noted that RAJA
forces the user to explicitly state which platform it is
run on in the code. This leads to the necessity of
two branches for the CPU and GPU version. Also,
RAJA does not automatically allocate memory for
views which makes it the responsibility of the user to
do so. The RAJA implementation of the PIC code
was obtained by rewriting a baseline C++ version
of the code. Artigues et al. report that “significant
restructuring” was required due to the necessity of
lambda functions. Furthermore, before running the
performance tests, it was discovered that the RAJA
implementation accesses the memory in such a way
that leads to false sharing of cached data. This oc-
curs when two threads are working on data stored
in the same cache line. If one of the threads writes
data to the cache the whole cache line and thus the
data of the other thread is invalidated. This means
that the second thread must synchronize the whole
cache line despite the fact none of its data has been

3

Figure 1: Performance difference (%) between RAJA and reference variants of Performance Suite kernels on
five HPC platforms. Positive values mean that the RAJA variant is faster than the reference. From [7]

changed. The RAJA implementation did not allo-
cate the memory as a block in contrast to the other
implementations, resulting in this phenomenon. This
can be seen as a drawback of RAJA as it is the user’s
responsibility to address this issue as a result of the
manual memory allocation in RAJA.
For the tests on the GPUs shown in figure 3 com-

pute time and data transfer time was measured sepa-
rately since depending on the application data trans-
fers might only happen in large intervals. Since the
GPUs used were all manufactured by NVIDIA the
CUDA backend for RAJA was used for compilation.
In this test scenario RAJA performance is much bet-
ter than on the CPU. On all GPUs RAJA’s compute
time is about a factor of between 2 and 2.5 slower
than the fastest implementation in each case. Fur-
thermore, on all GPUs its performance is about even
to Kokkos performance. [14]

3.3 SW4

SW4 [16] is a seismic wave propagation model de-
veloped to carry out 3-D seismic modeling. In a
study [15] on performance portability from 2021 this
was one of the applications whose performance porta-
bility was evaluated. The performance of the RAJA
implementation was measured across three GPUs
from different vendors. Two high performing GPUs
from AMD and NVIDIA and one weaker integrated
Intel GPU. It is worth mentioning that, although this
paper deals with applications for HPC architectures

the results for the Intel GPU are still worth consider-
ing, at least for the portability aspects of RAJA. This
is important as Intel seemingly intends to get into the
HPC market, since the announcement of their Ponte
Vecchio GPU. In the coming years Intel GPUs could
become more common in the leading HPC architec-
tures as a result of this. However the performance
results on Intel HPC GPUs may be different than
those measured on the integrated GPU. [17]

In order to compare the performance portability,
roofline efficiency was used as a way of quantifying
the ratio of achieved and theoretically possible perfor-
mance. Roofline efficiency is calculated by dividing
the measured FLOPS by the theoretically achievable
performance as derived from the roofline model. The
roofline model evaluates the maximum performance
in terms of two possible limiting factors: Either a
computation is memory bound or compute bound. In
order to run on each of the three GPUs the CUDA,
HIP and SYCL backends were used to obtain versions
capable of running on each GPU. The study was lim-
ited to a single important kernel used in SW4’s com-
putations.

Table 2 shows the results from the measurements.
Most notably the column FRk denotes the average
Flop Rate of the kernel and Pk stands for the peak
Flop Rate measured. It is noticeable that the version
run on the Intel GPU does display a much smaller
Arithmetic Intensity AIk, which describes how much
FLOPS can be carried out per data transfer. The pa-

4

Figure 2: Log-log plot of the compute times per iteration as functions of the number of CPU cores. We
compare the performance of Kokkos, RAJA, and OpenACC on the CPU to plain OpenMP. The codes were
run on a 20-core Intel Xeon Gold 6148 2.4GHz (Skylake) CPU. The times shown were averaged over 10 runs.
From [14]

GPU
RAJA
Backend

SW4
commit hash

Kernel
Runtime [s]

AMD MI100 HIP ff9225f 20.4
NVIDIA A100 CUDA ff9225f 6.77
Intel Gen9 SYCL f2f45db 3620

Table 1: SW4 version and kernel runtime. From [15]

GPU AIK
FRk

(GF/s)
Bound

Pk

(GF/s)
Intel Gen9 0.101 4.86 Memory 7.11
NVIDIA A100 3.73 1620 Memory 4700
AMD M100 (est) 0.744 536. Memory 692

Table 2: SW4 roofline-based performance data.
From [15]

per attributes this to the fact that the RAJA SYCL
backend is still in development and therefore not op-
timized for register spilling. It is also mentioned that
the CUDA backend is the most tuned out of the back-
ends, matching with the highest measured Arithmetic
Intensity of all three variants. [15]

Table 3 shows the roofline efficiencies of RAJA
(SW4) on each platform in comparison to other appli-
cations ported with the help of different frameworks
like Kokkos or OpenMP. It should be noted that this
does not serve as a good direct comparison, as every
framework was used to port a different set of ker-
nels. [15]

This paper also does not point out any complaints
with rewriting the kernel in RAJA and successfully
manages to port the application to three different
GPU architectures. [15]

3.4 Portability Analysis

In this section RAJA will be evaluated in terms of its
portability and ease of use. In all of the discussed ex-

5

Figure 3: Plot of the times per iteration for various GPU models. The performance of Kokkos, RAJA,
and OpenACC to CUDA was compared. In addition to the compute time the time necessary for one data
transfer is shown. The codes were run on a NVIDIA K40m, a NVIDIA P100, and a NVIDIA V100 GPU.
The times shown for the GPUs were averaged over 200 runs. From [15]

amples the code successfully compiled and executed
for each targeted platform. The tested platforms
include various GPU architectures from NVIDIA,
AMD and Intel and a multi-core CPU architecture.
This shows that RAJA is truly portable across many
architectures through its various backends.

The ease of portability was only discussed by the
PIC-code example in section 3.2. The study finds
that “significant restructuring” was required due to
the necessity of lambda functions [14]. Furthermore
because of memory management being the responsi-
bility of the user, mistakes like false sharing mitiga-
tion in this case can happen easily and more effort is
required for porting an application. Apart from this
RAJA provides a clear way of refactoring loops with
its library as discussed in section 2.

3.5 Performance Analysis

Now the the performance of ported RAJA applica-
tions will be evaluated based on the measurements
from the previous sections.

First up the results from section 3.1 will be dis-
cussed. Here it is indicated by Figure 1 that the
performance of the majority of CUDA and sequential
kernels are performance portable, whereas the perfor-
mance for the OpenMP variants is shown to be more
unreliable. This implies that the OpenMP backend
is more susceptible to performance anomalies, which
should be considered when it is used. However, since
these tests were performed in 2019, this high variance
is likely to have decreased because both C++ com-
pilers and RAJA have undergone active development
and therefore have been improved since then.

In section 3.2 the measurements in figure 3 show
that for GPUs RAJA accomplishes its goal of per-
formance portability to a certain degree. This can
be seen from the acceptable performance overhead in
comparison to the native implementations, of about
a factor of two. However for HPC applications, with
a runtime of several hours, a factor of two might still
be significant enough to justify an implementation
in one of the faster frameworks, although this needs
to be decided on a per-case basis. On the other

6

Application Kernel
Intel
Gen9

Nvidia
A100

AMD
MI100

Perf.Port
Metric(%)

Std.Dev.
/Avg

Min
/Max

AMR-Wind
MLABec 74.2 79.1 42.8 60.6 0.302 0.541
MLPoisson 34.9 54.1 8.47 18.2 0.705 0.157
MLNode 37.7 34.1 34.4 35.3 0.057 0.904

HACC

BarExtras 69.7 45.5 83.5 62.1 0.291 0.544
Corrections 94.6 36.5 89.1 60.9 0.437 0.385
DuDt 71.3 49.1 75.8 63.0 0.218 0.648
Geometry 80.9 55.3 74.1 68.3 0.189 0.683

SW4 curvelinear4sg 68.3 34.5 77.5 53.0 0.377 0.445
RI-MP2 RIMP2$omp 28.4 18.6 4.50 9.64 0.700 0.158
XSBench XSBench$omp 61.2 32.7 23.1 33.2 0.508 0.377

TestSNAP
FusedDeiDrj 65.1 35.5 9.99 20.9 0.748 0.153
Ui 38.8 21.7 2.36 6.06 0.871 0.061
Yi 5.11 27.0 10.5 9.15 0.804 0.189

Table 3: Roofline efficiency, Ek (%) and Performance Portability Metrics. From [15]

hand however, the tests on the CPU, shown in fig-
ure 2, indicate RAJA lacking behind significantly as
more CPU cores are used. This stands in contrast
to the other implementations including Kokkos, that
scale similarly to the ideal curve. RAJA’s inability
to scale accordingly can be attributed to the false
sharing, discussed in section 3.2, despite having been
improved in the executed version of the code. Ar-
tigues et al. remark that further improving the per-
formance of RAJA would require a great amount of
tuning. [14] However this stands in direct contrast
to the goals of portability as only having one code
version was meant to reduce the amount of neces-
sary work. This suggests, that for RAJA to make
an application truly performance portable across all
architectures, it would be necessary to put a lot of
effort into the porting process.

The last case study in section 3.3 makes it evi-
dent, based on Tables 1 and 2, that RAJA was ca-
pable of achieving acceptable performance on all ar-
chitectures, as the measured FLOPS do not deviate
from their theoretical peak by a factor of more than
three. It should be mentioned that this theoretical
peak does not correspond with the FLOP rate of

a reference implementation, that is expected to also
have a lower value than the peak. Table 3 displays
these deviations in greater detail. It is shown that
the NVIDIA GPU has the lowest efficiency of 34.5%
despite having the shortest execution time of 6.77
seconds. This may imply that the NVIDIA hardware
was utilized the worst out of the three GPU types.
The performance portability metric is calculated as
the harmonic mean of the ratio between measured
and peak FLOPS for each of the three GPUs. For the
SW4 kernel RAJA achieves a value of 53.0%. This
value may however vary greatly for different Kernels,
as can be seen at the example of the AMR-Wind
application in the first row. For this app the AM-
ReX framework [18] achieves 60.6% and 18.2% for
different kernels respectively. Because of this the per-
formance portability metric for RAJA might not be
reflected accurately by the obtained result and fur-
ther research must be done to receive a more solid
value. However, should the performance portabil-
ity metric remain around the 50% mark for differ-
ent kernels, RAJA does indeed provide performance
portability for all three GPU types. Further insight-
ful information can be obtained from this table by

7

comparing the SW4 against the TestSNAP row. Test-
SNAP was ported using the above mentioned Kokkos
framework, whose similarities to RAJA make it an in-
teresting contender. Under the assumption that the
measured performance portability metric for RAJA
is accurate, RAJA does outperform Kokkos for every
kernel, in the sense that it utilizes the given hardware
resources better. Kokkos highest measured perfor-
mance portability metric is only at about 21% which
shows RAJA to be the significantly faster framework.
Overall, RAJA’s performance is in the middle of all
results making it a viable solution to the problem of
portability.

All in all there is no deciding factor for when a
framework is truly performance portable, which leads
to one having to make per-case decisions whether
RAJA is performance portable enough for the ap-
plication. With that said the results from 3.2 clearly
show that RAJA did not scale nearly as well as other
frameworks when executed on a multi-core CPU with
the OpenMP backend. This was attributed to mem-
ory management errors. As can be seen in all exam-
ples RAJA does perform much better when executed
on a GPU architecture. The results of the RAJA per-
formance suite show little performance difference be-
tween reference and RAJA implementations for most
kernels. For the PIC-code a performance overhead
of about afactor of 2 worse than the reference imple-
mentation was found. This suggests that RAJA is a
good option for performance portability in the case of
GPU architectures. For CPU architectures it should
be used with care, as it is possible to performance to
greatly suffer.

4 Conclusion

We conclude that RAJA is a mature performance
portability framework. More specifically RAJA of-
fers an approach to performance portability that does
not require changing the loop bodies in most cases
as described in section 2. Furthermore, RAJA does
achieve portability on a great variety of CPU and
GPU platforms as evident from the presented ex-
amples. As can be expected from a platform inde-
pendent framework, the performance of RAJA im-

plementations does not reach that of native imple-
mentations. RAJA did not scale well on an CPU
architecture and therefore should not be relied on for
performance critical computations on CPUs which a
great number of HPC programs are. The perfor-
mance overhead of about a factor of two for GPU
architectures, measured in the PIC code, displays a
far better result, but sill amounts to a significant dif-
ference for applications with runtime that lasts over
a few hours. However as observed in the other two
examples the performance difference is not always
this great. Nevertheless a performance overhead of
this size cannot simply be neglected and developers
have to weigh up the importance of faster execution
time against portability. Especially when maintain-
ing large programs with over 106 lines of code that
would take multiple persons multiple years to rewrite
it can be beneficial to forego the high performance.
A great advantage of RAJA is the involvement of the
LLNL in its development. Because the LLNL actively
uses RAJA for their own projects it is unlikely that
development for RAJA will stop soon. With more de-
velopment in the coming years, it is likely that RAJA
support and performance will increase further reduc-
ing the drawbacks of using it.

8

References

[1] Oak Ridge National Laboratory. Frontier.
https://www.olcf.ornl.gov/frontier/. Ac-
cessed: 2022-06-21.

[2] Top500. Frontier. https://www.top500.org/

system/180047/. Accessed: 2022-05-29.

[3] LLNL. Arbitrary lagrangian-eulerian 3d and
2d multi-physics code. https://wci.llnl.

gov/simulation/computer-codes/ale3d. Ac-
cessed: 2022-05-29.

[4] LLNL. Llnl and hpe to partner with amd on el
capitan, projected as world’s fastest supercom-
puter. https://www.llnl.gov/news/llnl-

and-hpe-partner-amd-el-capitan-

projected-worlds-fastest-supercomputer.
Accessed: 2022-05-29.

[5] Raja github repositiry. https://github.com/

LLNL/RAJA. Accessed: 2022-05-29.

[6] Raja portability suite: Enabling performance
portable cpu and gpu hpc applications. https:
//computing.llnl.gov/projects/raja-

managing-application-portability-next-

generation-platforms. Accessed: 2022-05-29.

[7] David A. Beckingsale, Jason Burmark, Rich
Hornung, Holger Jones, William Killian,
Adam J. Kunen, Olga Pearce, Peter Robinson,
Brian S. Ryujin, and Thomas RW Scogland.
Raja: Portable performance for large-scale sci-
entific applications. In 2019 IEEE/ACM Inter-
national Workshop on Performance, Portability
and Productivity in HPC (P3HPC), pages 71–
81, 2019.

[8] Umpire: Managing heterogeneous memory
resources. https://computing.llnl.gov/

projects/umpire. Accessed: 2022-06-30.

[9] Raja performance suite. https://github.com/
LLNL/RAJAPerf. Accessed: 2022-05-29.

[10] Kokkos github repository. https://github.

com/kokkos/kokkos. Accessed: 2022-05-29.

[11] Yingda Cheng, Irene M Gamba, Fengyan Li, and
Philip J Morrison. Discontinuous galerkin meth-
ods for the vlasov–maxwell equations. SIAM
Journal on Numerical Analysis, 52(2):1017–
1049, 2014.

[12] Richard Fitzpatrick. Particle-in-cell codes.
https://farside.ph.utexas.edu/teaching/

329/lectures/node96.html. Accessed: 2022-
06-30.

[13] Openacc. https://www.openacc.org/. Ac-
cessed: 2022-06-30.

[14] Victor Artigues, Katharina Kormann, Markus
Rampp, and Klaus Reuter. Evaluation of per-
formance portability frameworks for the imple-
mentation of a particle-in-cell code, 2019.

[15] JaeHyuk Kwack, John Tramm, Colleen Bertoni,
Yasaman Ghadar, Brian Homerding, Esteban
Rangel, Christopher Knight, and Scott Parker.
Evaluation of performance portability of appli-
cations and mini-apps across amd, intel and
nvidia gpus. In 2021 International Workshop
on Performance, Portability and Productivity in
HPC (P3HPC), pages 45–56, 2021.

[16] Sw4 github repository. https://github.com/

geodynamics/sw4. Accessed: 2022-05-29.

[17] Intel representative teases the new ponte vecchio
compute gpu for ai & hpc applications of the fu-
ture. https://wccftech.com/intel-teases-

next-gen-ponte-vecchio-gpu-compute-

accelerator/. Accessed: 2022-06-30.

[18] Weiqun Zhang, Ann Almgren, Vince Beckner,
John Bell, Johannes Blaschke, Cy Chan, Marcus
Day, Brian Friesen, Kevin Gott, Daniel Graves,
Max P. Katz, Andrew Myers, Tan Nguyen, An-
drew Nonaka, Michele Rosso, Samuel Williams,
and Michael Zingale. Amrex: a framework
for block-structured adaptive mesh refinement.
Journal of Open Source Software, 4(37):1370,
2019.

9

