
Performance Portability for HPC 
Applications through the RAJA 

abstraction layer
Philipp Pindl

Technical University of Munich

05.07.2022

Munich, Germany



2

Problem



3

Problem

• Multiple different 
architectures used

• Multiple programming 
frameworks



4

RAJA

• Developed by the Lawrence Livermore National Laboratory 
(LLNL)

• Used by HPC applications for the Sierra supercomputer at LLNL

• Abstraction layer in the form of a C++ library

• Tries to achieve similar performance on different architectures 
with a single source code



5

RAJA - Concept
Different backends Target Platforms



6

RAJA - Example

for (int i = 0; i < N; ++i)

{

a[i] += c * b[i];

}

using namespace RAJA;
RangeSegment seg (0, N);
forall<loop_exec> (seg, [=] (int i) {

a[i] += c * b[i];
});

C++ version RAJA version

• Loop range can be translated to a Iteration Space
• Loop body stays the same
• for loop is expressed by Traversal Template
• Execution Policies specify which backend to use



7

Raja Performance Suite

• Spike at 0% mark for all backends
• OpenMP shows a greater variance

• Tool for comparing RAJA performance to native implementations



8

PIC–code - CPU

• RAJA does not scale for more CPU cores
• Attributed to false sharing memory issue
• Manual optimization would be necessary to solve 

problem



9

PIC–code - GPU

• Data transfer and allocation are excluded in 
measurements

• Measurements on NVIDIA GPUs
• RAJA implementation was slower than CUDA 

by about a factor of two
• Significant Overhead may be unacceptable



10

SW4

• Performance was measured as ratio to 
theoretical peak performance

• RAJA achieves best portability on AMD 
GPU

• Overall Performance Portability Metric 
of 53% but only for one kernel

• Compared to Kokkos framework 
(TestSNAP) it displays much better 
Performance



11

Portability

Pro

• Successful compilation for multi-core CPU and 
GPU architectures

• Easy concept for making C++ code portable

Con

• Necessity of C++ lambdas requires restructuring

• Manual optimization may be required



12

Performance

• Maximum measured performance overhead of about a factor of two 
against CUDA

• Different studies find varying performance loss

• Shown to be more performant than the Kokkos framework

• Performance portable on GPU architectures



13

Summary

• RAJA is a C++ library for performance portability

• Targets diverse GPU and multi-core CPU architectures

• Acceptable performance on GPUs

• Unreliable performance on CPUs 



14

Sources

• https://www.nersc.gov/systems/perlmutter/

• https://www.olcf.ornl.gov/frontier/

• https://upload.wikimedia.org/wikipedia/commons/thumb/c/c6/FugakuSupercomputerSC19.jpg/397px-
FugakuSupercomputerSC19.jpg

• https://www.top500.org/statistics/list/

• https://en.wikipedia.org/wiki/CUDA

• https://gpuopen.com/hiprt/

• https://de.wikipedia.org/wiki/OpenCL

• https://computing.llnl.gov/projects/raja-managing-application-portability-next-generation-platforms

• https://de.wikipedia.org/wiki/OpenMP

• https://howto.lintel.in/how-to-find-out-cpu-make-and-model-in-linux/

• https://www.nvidia.com/de-de/data-center/v100/

• https://serverhero.de/wissen/schnellste-gpu

https://www.nersc.gov/systems/perlmutter/
https://www.olcf.ornl.gov/frontier/
https://upload.wikimedia.org/wikipedia/commons/thumb/c/c6/FugakuSupercomputerSC19.jpg/397px-FugakuSupercomputerSC19.jpg
https://www.top500.org/statistics/list/
https://en.wikipedia.org/wiki/CUDA
https://gpuopen.com/hiprt/
https://de.wikipedia.org/wiki/OpenCL
https://computing.llnl.gov/projects/raja-managing-application-portability-next-generation-platforms
https://de.wikipedia.org/wiki/OpenMP
https://howto.lintel.in/how-to-find-out-cpu-make-and-model-in-linux/
https://www.nvidia.com/de-de/data-center/v100/
https://serverhero.de/wissen/schnellste-gpu

