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ABSTRACT
Considering modern developments, where computer architecture
and its performance are changing quickly, the performance and
portability of software projects becomes more important. In this pa-
per we will present Kokkos, a portability framework, that provides
the means to achieve this goal, show which efforts are necessary to
port to Kokkos and what its capabilities are.

1 INTRODUCTION
In light of recent developments of rapid performance gains on dif-
ferent hardware, achieving the highest HPC performance requires
switching to different platforms. When the underlying hardware
changes drastically, such as from CPU to GPU, then porting is in-
evitable. But porting large scale projects with over a million lines
of code to another system requires tremendous amounts of work.
Another downside is that for each project multiple code bases ex-
ist, with basically the same content. Modifying the project will
require modifying all code bases while finding the corresponding
parts. This is not ideal. To mitigate this, we will present Kokkos,
a portability library with its own ecosystem, and its performance.
By using Kokkos further porting efforts should be minimal and the
code bases should be able to merged into a single one.

2 KOKKOS: A PORTABILITY FRAMEWORK
Kokkos was originally developed by Sandia National Laboratories
to abstract applications from the underlying hardware architecture,
especially in the HPC environment. Meanwhile, it is more than
only a programming library. It has a big ecosystem, that not only
contains the core programming model, but also extensions for math
and graph support. Further parts are interoperability layers for
Python and Fortran as well as tools for debugging, profiling and
tuning. [15]

Kokkos Kernels is the ambiguous name of the extension for math
and graph support and should not be confused with the kernels of
the core programming model. In many engineering and physics
related problems linear algebra is necessary. Therefore, vendors
create specialized libraries for their own platform, resulting in poor
portability. Kokkos Kernels provides generic implementations, that
can delegate to vendor implementations. It also contains uncom-
mon functionality, which encourages vendors to create specialized
implementations. [15]

HPC applications often use more than one language such as
Python, Fortran and C++. A common approach is that Python co-
ordinates the application and delegates computationally intense
tasks to parts written in C++. With Fortran being one of the oldest
programming languages, many HPC applications are written with
it. To encompass new functionality, those also delegate tasks to

parts written in C++. To ease this process, Kokkos provides inter-
operability layer for both: Fortran Language Compatibility Layer
and pyKokkosbase. [15]

For better analysis Kokkos offers a unified tool system. It in-
troduces negligible overhead and the use of tools does not need
recompilation. With these tools users can see profiling informa-
tion about timing and memory independently of the underlying
hardware. Due to combined efforts of vendors and the Kokkos de-
velopers, internal hardware related information is viewable in a
user readable way. Because of that, big applications using Kokkos
are also profilable without further efforts. Beyond profiling the tool
system offers automatic optimization. This can change parameters
within the Kokkos runtime system, but also user defined parame-
ters. [15]

Another aspect of Kokkos is its wide variety of user support. It
offers lectures including exercises, a Wiki and an active commu-
nication platform for Kokkos related questions. [15] For gaining a
deeper understanding we made use of all of those and find them all
to be helpful.

Kokkos’ main purpose is portability. As Kokkos Core, the pro-
gramming model, is a C++ library, it provides templated abstrac-
tions to enable reusing the same code on different platforms. On
a higher level these abstractions are either execution or memory
related. These are: Execution Spaces, Execution Patterns, Execution
Policies, Memory Spaces, Memory Layouts and Memory Traits. [16]

2.1 Execution Basics
Execution Spaces represent an environment in which parallel op-
erations will be handled in. Such spaces are Kokkos::Cuda or
Kokkos::Thread. These stand for a Cuda stream or thread pool
respectively. Every Execution Space has a FIFO queue for parallel
operations. Each parallel operation can specify in which Execution
space it should run in. By doing so, scheduling performance can
be increased. For all Execution Space types Kokkos creates default
instances. These are used as a fallback solution in case the user
does not specify one for a parallel operation. In this case there are
no guarantees that different parallel operations are executed at the
same time. [16]

Execution Policies define in which manner parallel operations
are executed. Since a parallel operation is a set of “work items” [16] a
policy defines the range in whichwork should be done. Additionally,
it contains information about which Execution Space to use. To
address the parallel nature of said operations, Execution Policies can
also define scheduling strategies. [16] A basic policy is RangePolicy.
It can be used to specify a range of n items to be worked on. [5]

Execution Patterns is the Kokkos term for sections of code ex-
ecuted in parallel, also called kernels, and are the priorly men-
tioned parallel operations. These take shape as parallel_for,
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parallel_reduce, parallel_scan. The body of Execution Pat-
terns must be independent from execution order, since no such
guarantees are made. In general, kernels can be used by calling
the wished type. The parameters that all have in common are an
Execution Policy and a construct with code to be run in parallel.
This construct can either be a lambda or a functor. In the following
we will call this lambda. When using a RangePolicy in DefaultExecu-
tionSpace for the ExecutionPolicy it can be replaced by an integer.
Parallel_for represents a regular for loop, in which all loop iter-
ations are executed in parallel. Each loop iteration is only executed
a single time. The lambda argument is the current index. [16] An
example using CUDA execution space can be seen in listing 1.

// Kernel with indices in [0, n)
parallel_for(RangePolicy<Cuda>(0, n),

KOKKOS_LAMBDA(int i) { /* ... */});

Listing 1: Short Kokkos kernel using RangePolicy in CUDA
execution space. Based on [16]

Parallel_reduce functions just as parallel_for only with
the addition that the output of all loop iterations is aggregated into
a single output. The lambda has as parameters the current index
and as many references to accumulators as there are Reducers.
The Execution Patterns function has as parameters additionally all
needed Reducers. A Reducer contains information about reduction
result initialization and combination as well as a reference to the
output destination. Kokkos includes Sum, Prod, Min, Max, MinMax,
MinLoc, MaxLoc, MinMaxLoc, LAnd, LOr, BAnd and BOr as Reducers.
When using Sum, it can be replaced by a reference to the output
destination, since Sum is the default Reducer. The user can also
define Reducers. [16] Listing 2 shows a simple reduction kernel
with an explicit Sum reducer storing the output in result. It calculates
the sum over the first n values multiplied with two.

double result = 0.0;
parallel_reduce(RangePolicy<OpenMP>(n),

KOKKOS_LAMBDA(int i, double& s)
{ s += 2 * i; }, Sum{result});

Listing 2: Kokkos kernel using RangePolicy in OpenMP exe-
cution space and summing over the first n values multiplied
with two. Based on [16]

Parallel_scan maps inputs ai to the aggregation of a0 . . . ai
with an associative operator. Due to parallel execution each iteration
can be executed multiple times. [4, 16] The lambda parameters are
an index, an accumulator, and a Boolean variable, that specifies
whether the current pass is final. The Boolean variable is necessary
to only overwrite data when no other pass needs it anymore. [16]
Listing 3 shows a kernel, that maps value ai to 2 · (a0 + . . . + ai ).

2.2 Memory Basics
Memory Spaces are a domain fromwhich users can request memory.
They are an abstraction from the underlying Hardware, therefore
also from memory allocation and management. Different spaces

parallel_scan(n,
KOKKOS_LAMBDA(int i, int64_t& partial_sum,

bool final)
{

partial_sum += 2 * array(i);
if (final) array(i) = partial_sum;

});

Listing 3: Kokkos kernel using implicit RangePolicy in
default execution space and performing a scan operation.
Based on [16]

can only be accessed from certain hardware. CudaSpace, CudaUVM-
Space andCudaHostPinnedSpace can be accessed fromGPUs, whereas
CudaUMV-Space and HostSpace from CPUs. To transfer data from
one space to another or to create copies, Memory Spaces provide
the deep_copy function. [16]

Memory Layouts define in which order multidimensional array
indices are used to calculate the actual memory address. Since
Kokkos provides abstractions for Memory Layouts, algorithms can
be written independently of them to accommodate the needs of
different hardware. [16]

Memory Traits define additional behavior when accessing mem-
ory. Example Traits are atomic access and unmanaged, with the
latter removing overhead imposed by the Kokkos runtime system
while reducing portability. [16]

Views bring the prior three aspects together as being the most
common data structure in Kokkos. A View is an array or pointer
of up to rank N. Dimension sizes can be specified during compile
and runtime. To create a View the data type must be specified as
pointer or array. By using a pointer or array the dimension size will
be determined at run or compiletime respectively. When a View is
created, all necessary memory will be allocated by the run time.
During definition of a View the Memory Space, Memory Layout
and Memory Trait can be specified to add further details. Since a
View is a pointer to allocated memory, it handles reference counting
and automatic deallocation just like std::shared_ptr. Therefore,
a View does not need to have its own allocated memory but can
point to another Views memory. [16] Listing 4 contains examples
of Views with run and compiletime dimensions as well as explicit
Memory Spaces and Memory Traits.

// simple 2D View in default memory space
// with runtime dimensions N and M
auto v2d = View<double**>{"v2d", N, M};
// same thing but with compile time dimensions
auto v2dc = View<double[5][5]>{"v2dc"};
// 3D View in CudaUVMSpace and both dim types
auto v3d =

View<int**[5], CudaUVMSpace>{"v3d", N, M};
// Atomic access to v3d
auto v3da = View<int**[5], CudaUVMSpace,

MemoryTraits<Atomic>>{v3d};

Listing 4: Examples of KokkosView instantiations. Based on
[16]
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2.3 Advanced Techniques
Atomic access on memory can also be guaranteed regardless of
data size. Based on hardware and data type Kokkos uses atomic
operations or compare-and-swap or a shared lock table. The later
hashes the requested address into the lock table. [16]

In the example of particle simulations, where each entity excerpts
a force on each other, the parallel calculation of this can lead to race
conditions. A common approach for mitigation in CPU algorithms
is data replication. On GPUs with their limited memory, this is not
viable. Therefore, atomic operations are usually used on accelera-
tors. This approach also runs on CPUs, however GPUs have special
function units that fulfill this purpose resulting in higher perfor-
mance. Another data structure is ScatterView. It is an abstraction
for the presented approaches allowing synchronized write access to
memory that is potentially used by other threads. During parallel
access a participant can contribute data. ScatterView handles this
request by using one of the two options. After completion of the
kernel data can be merged. With atomic operations it is already
merged. [16]

Often Views are not just one dimensional. An example is the
initialization of a three-dimensional View. Assuming its size is 100 in
each dimension, parallelizing the process along a single dimension
results in poor performance on GPUs because its large parallel
capacities are not facilitated. Using a simple Kokkos range to index
the entire one million entries requires the use of fixed operations
to deconstruct the flattened index into its three components for
the different dimensions. This approach fixes performance issues
on GPUs, but has a fixed function from a flattened to the three
dimensional space. The performance of this approach depends on
the underlying hardware. On a CPU the additional overhead is
suboptimal. MDRangePolicy addresses this issue and is capable of
covering multidimensional view spaces. Additionally, it provides
functionality to split the address space into tiles, which allows for
more abstract access patterns. [16]

When loops are not tightly nested, the parallelization with
MDRangePolicy will fail, due to dependencies between threads. In
cases where groups of threads share certain resources, Basic Thread
Teams can be used. With TeamPolicy, an Execution Policy, teams
can be created. Each team has a pool of threads. In this case each
loop iteration is not directly assigned to a thread, but rather to a
team. This approach is able to run nested loops concurrently. The
parameters of TeamPolicy define the amount of teams and their
respective thread pool size. The lambda parameters are extended by
a reference to the active team. For Kokkos to recognize the nested
loops, the inner loops execution policy is TeamThreadRange. [16]

Upon creation of a parallel operation with a TeamPolicy, the
threads of all teams are active. If there are multiple nested loops
in sequential order, synchronization might be necessary because
a faster thread can already proceed to the next nested loop while
another thread is still working on the first loop. To synchronize all
threads and let themwait until all are at the same point in execution,
a barrier can be used. If necessary, each team can request scratch
memory, that is accessible from each thread within the team. Fur-
thermore, every thread can also request memory for itself. Due to
backend limitations, requests must be stated prior to team creation.
When possible, scratch memory is accelerated by existing hardware.

parallel_for(TeamPolicy<>(N, AUTO),
KOKKOS_LAMBDA(const team_t& team_h)
{
int i = team_h.league_rank();

parallel_for(
TeamThreadRange(team_h, K),[&](int j)
{
parallel_for(
TeamVectorRange(team_h, L),
[&](int j){ /* do something */});
team_h.barrier();
parallel_for(
TeamVectorRange(team_h, M),
[&](int j){ /* do more */});
});

});

Listing 5: Hierarchical Kokkos kernel using vectorization
and barrier for synchronization. Based on [16]

Further parallelization is achievable with vectorization. Kokkos sup-
ports one form of implicit vectorization with the Execution Policy,
ThreadVectorRange. This can be used within a TeamThreadRange
policy. However, this method only gives hints to the compiler for
vectorization. To enforce vectorization, the use of explicit SIMD
types is necessary. SIMD data types are handled differently depend-
ing on the platform. On CPUs computation and storage operates
on the same vector data type. GPUs store data as arrays, while each
computational unit only uses a single scalar variable. Therefore,
Kokkos offers a templated wrapper for SIMD types. [16] Listing 5
displays a possible way to create a hierarchy of kernels. To access
the current team index, league_rank is called. In the middle barrier
is called to synchronize all threads progress.

On a higher level parallelism is expressed through Execution
Spaces. Upon inserting kernels into distinct Execution Space in-
stances, kernels are potentially executed concurrently. Using a fence
on a Execution Space ensures that all enqueued kernels are com-
pleted. [16]

Due to driver overhead, on-device scheduling and memory band-
width limitations, kernel execution time is increased by a certain
latency. If higher performance is necessary, but no further kernel
and memory optimizations are possible, then Kokkos Graphs can
amortize some latency. Kernels, that are often used in conjunc-
tion with each other or need to be computed sequentially, can be
placed in a Graph. When executing this the mentioned latencies
still exist for the Graph. But in comparison to executing the kernels
individually, latencies are reduced overall. [16]

3 PORTABILITY PERFORMANCE
The main interest of this part lies in two things. Firstly, there al-
ready exist many large scale HPC applications such as Uintah [14].
To fully facilitate the new features and better performance of new
computer architectures, projects should be ported to those systems.
However, the resulting effort to accomplish this can be tremen-
dous. Therefore, the question arises: What are the steps to port to
Kokkos? Secondly, after porting to Kokkos, how well does a Kokkos

3
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application perform in comparison to other or more specific imple-
mentations and how portable is code using Kokkos?

3.1 Porting Effort
As the first step, code that can be run in parallel has to be identified
and refactored into Kokkos Kernels. As the C++ STL and other
data structures are not portable, they must be replaced with data
structures provided by Kokkos. Initially, unmanaged Kokkos Views,
i.e. Views with the unmanaged memory trait, can be used to wrap
the existing data structures. By doing so, the refactoring effort can
beminimized, which allows for gradual porting to Kokkos. However,
unmanaged Views are not portable. Therefore, after initial tests
they must be replaced with other alternatives. [14]

3.2 Performance analysis using case studies
In the following we will look at different case studies about Kokkos
regarding performance, portability, and other factors. This should
give insight in the capabilities of Kokkos, but also what its draw-
backs can be.

3.2.1 Uintah. To solve gas and fluid dynamics problems, complex
mathematical computations are necessary. Uintah is a software that
finds solutions for such problems. It provides a runtime system to
solve user applications, while separating runtime and application
code bases. Initially, application developers had to write different
code for CPU, Xeon Phi and GPU tasks. The usage of Kokkos en-
abled higher parallelism and the merge of three different code bases
into one. [14]

Since Uintah is a large project, converting it tomainly use Kokkos
kernels was a significant amount of work. Most of it consisted of
the mentioned steps: finding loops, converting them into kernels
and transforming data structures into Kokkos usable ones. Sun-
derland et al. [14] advise to perform refactoring gradually. The
unmanaged memory trait supports achieving this. By wrapping ex-
isting data structures in unmanaged Kokkos Views, other runtime
or application code does not need to undergo major refactoring
and it is easier to find non Kokkos API compliant code. To verify
kernel portability, they can be extracted into a test environment
with mock inputs. [14]

TheArches application for Uintahwas converted to using Kokkos
with fairly little effort allowing fast first tests with Kokkos. Sun-
derland et al. [14] mention two exemplary kernels: Upwind and
van Leer. In comparison to the prior standard implementation both
achieved positive speedup, whereas Upwinds speedup is greater
due to less computational branches in the kernel. The performance
improvements are a result of Kokkos’ parallel_for and memory
access pattern as well as rewriting kernels. [14] The detailed results
are in table 1.

Patch size 83 163 323 643 1283
Upwind Kokkos Speedup 4.6 10.0 10.7 12.9 12.7
van Leer Kokkos Speedup 2.76 4.05 4.04 5.01 6.37

Table 1: Table of speedups of Upwind and van Leer in com-
parison to their serial implementation. Source: [14]

In another more detailed example within the Arches application
the transformation and performance of a kernel for heat dissipation
calculations is displayed. [8, 14] The standard implementation con-
tains a for loop over Uintah arrays using iterators. These arrays are
indexed using IntVector, which represent a tuple of three elements.
Due to implementation details of IntVector, pointer indirection
occur. This provides ease of development with the downside of
worse performance. [14] The initial version can be seen in listing 6.
Said arrays are D, X, Y, Z, phi and rhs. The first five are input data
and rhs is the output destination. The variables of type IV extract
the indices and the section with the assignment to rhs performs
the actual calculation.

typedef IntVector IV;
for(Iterator itr(low, high); !itr.done(); ++itr)
{

IV c = *itr;
IV xp = c+IV(1,0,0), xm = c+IV(-1,0,0);
IV yp = c+IV(0,1,0), ym = c+IV(0,-1,0);
IV zp = c+IV(0,0,1), zm = c+IV(0,0,-1);
rhs[c]+=
ax * (X[xp]*(D[xp]+D[c]) * (phi[xp]-phi[c])
-X[c] * (D[c]+D[xm]) * (phi[c]-phi[xm]))

+ay * (Y[yp]*(D[yp]+D[c]) * (phi[yp]-phi[c])
-Y[c] * (D[c]+D[ym]) * (phi[c]-phi[ym]))

+az * (Z[zp]*(D[zp]+D[c]) * (phi[zp]-phi[c])
-Z[c] * (D[c]+D[zm]) * (phi[c]-phi[zm]));

}

Listing 6: Initial sequential verions. Source: [14]

Basic mitigation is done by using Kokkos parallel_for, rewrit-
ing the indexing mechanism and using unmanaged Views as wrap-
pers. [14] This is the first kernel in listing 7. Based on the parameter
list, we infer that range is a MDRangePolicy. The loop structure was
replaced with parallel_for and the index extraction with IV was
replaced with range. The calculation is fundamentally unchanged.
Further improvements are gained by rewriting the basic Kokkos
kernel into using auto vectorization. For this, subviews need to be
generated, such that a nested parallel_for, which allows auto
vectorization, can operate independently of external indices. [14]
It appears in the second half of listing 7. Here the MDRangePolicy
was altered, such that the range of the third dimension was sliced
into parts for vectorization. Additionally, subviews are created to
support vectorization.

With Kokkos kernels high speedups are achievable in compari-
son to the basic Uintah implementation, whilst having portable code.
By using implicit vectorization an additional speedup of around
factor two can be reached. Considering the portability of Kokkos
code, speedups of up to 50x are achievable. [14] These results are
displayed in table 2. Similar speedups using SIMD are also stated
in [12].

The presented approach improves performance on a single sys-
tem. Holmen et al. [1] examine the effects of using MPI and Kokkos
to parallelize across multiple nodes. As scalability, following Am-
dahls law, depends on the amount of work, through the use of
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// basic kokkos kernel
parallel_for(range ,[=](int i, int j, int k){

rhs(i,j,k) +=
ax * (X(i+1,j,k)
* (D(i+1,j,k) + D(i,j,k))
* (phi(i+1,j,k) - phi(i,j,k))
- X(i,j,k)
* (D(i,j,k) + D(i-1,j,k))
* (phi(i,j,k) - phi(i-1,j,k)))
+ ay * (Y(i,j+1,k)
* (D(i,j+1,k)+D(i,j,k))
* (phi(i,j+1,k) - phi(i,j,k))
- Y(i,j,k)
* (D(i,j,k) + D(i,j-1,k))
* (phi(i,j,k) - phi(i,j-1,k)))
+ az * (Z(i,j,k+1)
* (D(i,j,k+1) + D(i,j,k))
* (phi(i,j,k+1) - phi(i,j,k))
- Z(i,j,k)
* (D(i,j,k) + D(i,j,k-1))
* (phi(i,j,k) - phi(i,j,k-1)));

});

// SIMD kokkos kernel
parallel_for(range, [=](int i, int j,
pair<int,int> k_range){

auto r = subview(rhs, i, j, ALL());
/* generate other subviews */
parallel_for(krange, [&](int k){

r(k)+= ax*(xp(k)*(dp0(k)+d00(k))
*(pp0(k)-p00(k))

-x0(k)*(d00(k)+dm0(k))
*(p00(k)-pm0(k)))

+ay*(yp(k)*(d0p(k)+d00(k))
*(p0p(k)-p00(k))

-y0(k)*(d00(k)+d0m(k))
*(p00(k)-p0m(k)))

+az*(z(k+1)*(d00(k+1)+d00(k))
*(p00(k+1)-p00(k))

-z(k)*(d00(k)+d00(k-1))
*(p00(k)-p00(k-1)));

});
});

Listing 7: Conversion to (un-)vectorized Kokkos kernels.
Source: [13]

Kokkos high scalability is achievable without the need to increase
work. [1]

3.2.2 Comparison Kokkos vs. others. Alternatives for Kokkos for
HPC programming are OpenMP, OpenACC, CUDA and RAJA.
OpenMP focuses on multicore CPU programming while using anno-
tation style directives. OpenACC shares similarities with OpenMP
in its style, but its main target is GPUs. Using CPUs to parallelize

323 643 1283
ms x ms x ms x

Serial Uintah 1.06 1.0 8.04 1.0 64.9 1.0
Kokkos Naive 0.65 1.6 4.30 1.9 36.1 1.8
Serial SIMD 0.31 3.4 2.47 3.3 20.2 3.2
Kokkos Naive 0.17 6.4 1.16 6.9 8.94 7.3
4 Threads SIMD 0.08 13 0.58 14 5.27 12
Kokkos Naive 0.07 16 0.54 15 4.51 14

16 Threads SIMD 0.04 24 0.31 26 2.54 25
Kokkos Naive 0.04 29 0.28 29 3.52 18

32 Threads SIMD 0.02 43 0.16 49 3.42 19
Kokkos GPU 0.09 12 0.21 38 0.61 105
CUDA SIMD 0.09 12 0.21 38 0.63 103

Table 2: Times and speedups of Kokkos kernels with and
without vectorization. Source: [14]

is possible, but might need refactoring to achieve comparable per-
formance. [3] CUDA only supports the usage of GPUs. [11] RAJA
is another portability library just as Kokkos. [3]

In Artigues et al.s [3] portability performance analysis of the
different libraries a plasma physics problem was used as the testing
scenario. Their baseline implementation was initially written in
FORTRAN but was ported to C++. The baseline implementationwas
parallelized into different versions. These were made with either
OpenMP, OpenACC, CUDA, Kokkos, a combination of OpenMP
and Kokkos, or RAJA. Each version was created with only the use
of the respective library. The exception is the implementation with
OpenMP and Kokkos. It uses Kokkos’ unmanaged Views for mem-
ory management and OpenMP for parallel tasks. These versions
were analyzed regarding performance, but also in other aspects
such as portability, productivity, and readability. [3]

Since OpenMP and OpenACC use annotations as compiler di-
rectives for parallelization, we will not describe these libraries in
further detail than in listing 8. [10] [2] It displays two short exam-
ples of the usage of annotations in OpenACC and OpenMP.

// simple parallelized loop
// using OpenACC
#pragma acc parallel loop
for(unsigned int i=0; i < nCount; i++)

// do something in each thread

// simple parallelized loop
// using OpenMP
#pragma omp parallel for
for (int i = 1; i < n; i++)

c[i] = a[i] + b[i];

Listing 8: Examples for annotations of OpenACC and
OpenMP. Based on [10] [2]

Due to their use of annotations, code written with these two
libraries has high readability. The programming model of Kokkos
and RAJA are quite similar. Both support the three mentioned
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parallel operations. However, Kokkos provides functionality for
reductions of vectors with ScatterView. RAJA does not. This type
of reduction was necessary for solving the testing scenario. [3]

A benefit of Kokkos is, that it provides defaults for most of its
templates, which in turn results in portability without the need of
preprocessor commands, unlike RAJA. In Artigues et al.s [3] Kokkos
implementation the only exception for that, was the memory access
pattern for ScatterView. In RAJA no defaults are provided, forcing
the programmer to think about what to choose. Furthermore, that
creates many branches in source code, what reduces readability.
Readability is further reduced in RAJA, because RAJA only accepts
lambdas as methods to provide parallel code. In Kokkos the user
can also define functors. This helps isolating code and improving
reusability. Nevertheless, in comparison to OpenMP or OpenACC
both Kokkos and RAJA require more work to use, since code must
be placed in lambdas or functors. Using CUDA needs a similar
amount of work. In terms of library specific additional code, the
order from least to most is: OpenMP and OpenACC, Kokkos and
CUDA, RAJA. Productivity wise, the time to grasp the concepts of
Kokkos and RAJA is similar. The process of developing OpenACC
code is like CUDA to equivalent execution and data mappings.
Regarding portability, with Kokkos and RAJA the implementations,
that are designed to run on CPUs, do not need modifications to
run on GPUs. When using Kokkos, it allows compilation with a
Makefile with architecture dependent flags for optimization. With
the other libraries, this needs to be done by hand. Due to their
use of templates, Kokkos and RAJA generate code optimized for a
specific platform at compile time. Therefore, debugging, or simply
inspecting code must be done on assembly level. [3] Based on these
findings, an overview of the non performance aspects of different
libraries can be seen in table 3.

criterion OpenMP OpenACC CUDA Kokkos RAJA
code clarity high high low medium medium
productivity high medium low medium medium
portability low medium low high high
performance high high high high medium

Table 3: Evaluation of libraries in selected categories. Source:
[3]

Looking at the performance results of the CPU benchmarks,
OpenACC is the fastest, closely followed by OpenMP. Kokkos is
about 1.21 times slower than OpenACC. A potential reason is the
overhead of Kokkos’ runtime system. Out of all RAJA has the worst
performance. The version, in which OpenMP and Kokkos were
used, has a similar performance as the native OpenMP version.
This shows that if more performance is wished, Kokkos kernels can
be partially replaced with alternatives of other libraries. [3]

GPU performance is slightly different. OpenACC and CUDA are
in the first two places. CUDA implementations benefit from newer
hardware. On average the RAJA implementation is faster than the
Kokkos version. [3]

The results for Kokkos in Artigues et al.s [3] analysis are that,
it provides a high level of abstraction and a variety of predefined
functionality. A downside is that compilation results can only be

viewed in assembly. But the code can be compiled for CPUs or
GPUs without the need of modifications. The provided default
values however are useful. Furthermore, almost no preprocessor
commands are needed. Another benefit, that increases productivity,
is that Kokkos is well documented. Performance results are within
acceptable range in comparison to the platform specific libraries
and on CPU Kokkos scales well with core count. [3]

3.2.3 High Energy Physics (HEP). Tests at the LHC can be classified
under high energy physics. Each HEP experiment there produces
large data sets. This necessitates high computational power to run
simulations using the data. Only using CPUs might not be sufficient
for this purpose. Therefore Dong et al. [6] ported a selected simula-
tion to use GPUs. They created two versions. One uses CUDA and
the other one Kokkos. The CUDA version was created by mainly
parallelizing over a loop that handles particle calculations. STL data
structures were converted into arrays. Data transfers from and to
the GPU were minimized. Due to intermediate testing results, they
created a from the original CUDA code derived version that groups
calculations for certain particles together. By doing so, performance
is expected to improve. We will not go in further detail. For more
information see [6]. With these two versions the speedup ranges
between a factor of 1.2 and 8 depending on input data. [6]

When CUDA is used as the parallel device in Kokkos, then code
from both libraries can interact with each other without limitations.
This allows Kokkos kernels to use CUDA functions and access
memory, that is managed by CUDA. Because of that CUDA code
can be gradually converted to using Kokkos. The Kokkos version
made use of this option. Dong et al. [6] chose to do so to explore
portability as well as the problems, that can arise when porting
a potentially large project from serial C++ to CUDA and then to
Kokkos. Each porting procedure from one library to another was
done with as few changes as possible. During the conversion from
CUDA to Kokkos, the result of each rewrite was validated. The first
step of this conversion was to replace CUDA kernels with Kokkos
kernels. Memory allocated with CUDA was not altered. The change
to using Views was done as the next step. [6]

The performance of the Kokkos version was measured with
the CUDA version as its baseline. Tests were run with different
backends. [6] The results can be seen in table 4. Clean initializes a
large array. Sim_a is a bigger kernel with the main logic. Sim_ct
is a smaller reduction kernel. Copy d->h is the time for data copy
operations from devices to host. The names until now are parts of
the Event loop. It in turn is the previously mentioned parallelized
loop. [6]

Looking at the results, the Kokkos version performs in the major-
ity of all cases worse than the native CUDA implementation. When
comparing the Kokkos version with the CUDA backend against its
baseline, its performance is on average 56% worse. However, in two
of the cases it is only about 17% and in other two about 35% worse.
With Clean being the exception, this performance is much closer to
the baseline. Comparing the CUDA backend version against the ini-
tial serial CPU version, it still delivers a significant speedup of more
than factor 4. For the CPU backends the copy d->h test shows high
speed since the device equals the host. The serial backend is overall
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Kokkos (relative) CUDA
Kernel CUDA Serial pThread OpenMP µs

Clean 2.83 7.67 1.61 2.26 14.0
sim_a 1.17 36.9 11.2 11.5 49.2
sim_ct 1.35 12.9 1.66 1.99 15.2
copy d->h 1.30 0.02 0.06 0.04 25.3
event loop 1.16 7.26 2.61 2.79 321
event loop
speedup vs.
CPU

4.63 0.74 2.06 1.93 5.38

Table 4: Speedup of respective Kokkos version (left) in com-
parison to native CUDA implementation (right). Source: [6]

worse than the native serial implementation by 26%1. Both parallel
CPU backends perform roughly the same, while being worse than
the native CUDA version but about twice as fast as the native serial
version. Dong et al. [6] conclude that initializing device memory
with Kokkos has some overhead, because first host Views are cre-
ated before this is copied to the device. But despite the overhead
from Views and from launching kernels, overall, it is close enough
to the CUDA version. Furthermore, they state that the portability
Kokkos offers, is more significant than minor performance losses.
[6]

3.2.4 Deep Neural Networks (DNN). Common use cases for DNNs
are recognition and classification tasks in AI. [7] For brevity we will
omit the underlying concept. Introductory information can be found
in a paper by Maind et al. [9]. Neural Networks can be modeled by
using matrices. Therefore, Ellis et al. [7] conducted experiments,
that implement image recognition using the Kokkos Kernels library.
Since the matrices had dimensions of at least 1024 by 1024 up to
65536 by 65536 and the number of matrices was between 120 to 1920,
sparse matrices were used. Based on this, the performance of three
versions were compared. Onewas a serial reference implementation.
Two parallel versions were developed using the respective libraries
Kokkos, or LAGraph. The Kokkos version (KKV) was written in
a way, such that it is portable, which was not mandatory for the
tests. The Kokkos and LAGraph versions perform 300 to 500 times
better than the reference version. KKV is faster than the LAGraph
version (LAGV) when the matrix dimension is 4096 by 4096. For
tests with the largest matrices it is the other way around. KKV scales
linearly with matrix size, until the indexing data size needs to be
changed. Attempts of scaling up KKV onto multiple nodes, result in
higher performance until 12 nodes. In their implementation work
is statically distributed to the different nodes. Due to the nature of
sparse matrix multiplication, after a certain amount of calculations
the work of each node differs. Because nodes need to synchronize,
a faster node must wait for a slower one leading to bad scalability
regarding node count. Therefore, Ellis et al. [7] propose to split
work dynamically to maintain an even amount of work across
all nodes. [7] Finally, they conclude that using Kokkos Kernel for
matrix multiplication increases performance, but “[. . . ] scaling to
higher nodes counts shows diminishing returns.” [7].

1Correction: In [6] 36% was stated, but considering the values in table 4 26% would be
consistent

4 SUMMARY
In the beginning, we described what Kokkos is and how to use
it. Beyond that, the porting effort to use Kokkos is comprised of
the three steps: locating code, refactoring to kernels and replacing
data structures. The main take away points of the case studies are
the following: In Uintah the porting steps were displayed in an
example. Compared to serial code, high performance is achievable
with rather little effort. With the use of vectorization speedups of up
to 50x are possible. For Uintah scalability across multiple nodes was
done with no complications. In the comparison of Kokkos against
other alternatives, it was shown that Kokkos’ readability is lower.
However, it provides many default and predefined components,
which enables high portability. Performance is also high, but it
may vary. Depending on the backend another alternative may be
faster. In HEP we focused on the CUDA backend of Kokkos. The
perforance is worse than a native CUDA implementation, but still
provides significant speedups compared to serial code. Additionally,
it is pointed out again that its high portability outweighs minor
performance losses. In DNN the performance of the Kokkos Kernels
library for linear algebra was evaluated. Very high performance
gains are achievable. In this case, horizontal scalability was low,
due to the nature of sparse matrices.

5 CONCLUSION AND FUTUREWORK
We have shown the concepts and vast functionality of Kokkos. Un-
derstanding enough to parallelize own code might take time. The
described case studies show that performance of Kokkos kernels is
mostly faster than serial C++ code. In comparison to other parallel
implementations its performance can be better or worse depending
on the current work load. Benefits of using Kokkos are its supplied
data structures and access patterns, allowing sequential porting
and high portability. With the use of SIMD data types and similar
methods, vectorization is possible with only minor changes. Fur-
thermore, Kokkos is capable of integrating well with other systems.
Scaling to higher node counts varies from case to case. Special work
distribution may be necessary. In comparison to other frameworks
readability is more impacted and the porting effort is higher, but
its acceptable performance and high portability make Kokkos a
compelling option. Since ARM based architectures are becoming
more performant, further studies can show if the HPC landscape
can easily transition by using Kokkos and whether performance is
comparable.
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