
Investigating the HIP programming model with
regards to portability and performance portability

Niklas Kerscher
Department of Computer Science

Technical University Munich
Munich, Germany

niklas.kerscher@tum.de

July 4, 2022
Abstract—While modern HPC systems are being dominated by

NVIDIA GPUs, new vendors such as AMD and Intel are entering
the field, which creates the problem of software portability across
different GPU architectures. Therefore portable programming
frameworks were introduced, to allow code to be portable
across different systems. Ideally, the performance level of the
same application is portable across the different architectures
and the porting process is fast and work efficient. Tackling
these challenges, AMD introduced the Heterogeneous-compute
Interface for Portability (HIP) [1], which is an open-source
C++ runtime API and kernel language. It provides compatibility
between CUDA and ROC and is designed to deliver close to
native performance on CUDA machines while exposing additional
low-level hardware features [2]. In this work, the performance
portability of HIP and the possibilities and effort of its portable
features are described and evaluated. In addition, the challenges
regarding this research are presented and the future role of HIP
and other parallel programming models like Kokkos, SYCL, etc.
is discussed. These models are mostly based on the underlying
concepts of the low-level OpenCL programming model and
provide further code portability for all supported architectures,
while also incorporating all features of high-level open-standard
parallel programming frameworks. HIP performed equally well,
compared to other competing frameworks and porting code
using hipify is easy, although minor code modifications might
be necessary.

Index Terms—HPC, HIP, Performance Portability, CUDA

I. INTRODUCTION

Taking a look at the current top ten spots on the TOP500
list of supercomputers [3], as of November 2021, eight of
them are built on heterogeneous systems. Also, more than
20% of the machines listed in Top500 rely on GPUs for their
computing power and indicators point to an increase in this
number as upcoming supercomputer projects, will also feature
GPU-based models [4]. As stated in Cade Brown et.al.’s paper
[4] another factor for GPU designs in HPC clusters, is the use
of Artificial Intelligence and Machine Learning, both of which
require a boost in low-precision calculations [4]. NVIDIA’s
latest Tensor Cores, able to reach 624 TFlop/s, have been
developed specially for these use cases. For a couple of years,
GPUs have been at the forefront, when it comes to choosing
accelerators for supercomputers. They meet performance re-
quirements while keeping an acceptable power consumption

profile. Currently still in development, Frontier1 and El Capi-
tan will be using AMD’s EPYC CPU and Radeon Instinct GPU
architecture [5,6] to achieve performance levels, exceeding the
exascale limitation. This also means that AMD’s ROCm open
compute platform will be integrated into both machines. Other
machines in the supercomputer race include the Intel-based
Aurora system and Japan’s Fugako computer, which uses chips
based on the ARM-64 architecture. Furthermore many current
HPC clusters use a mix of Intel, AMD and NVIDIA proces-
sors. This vendor and architecture heterogeneity highlights the
need for code and performance portability. In the past years
the HPC community developed and adopted many of these so-
called parallel programming frameworks, to tackle the posed
challenges. Multiple frameworks, which work independently
of the underlying architecture, while maintaining performance
and portability, include Kokkos, SYCL, OpenCL, HIPCL,
HIP and others [7]. However these approaches only present
wrappers for the underlying vendor-specific solutions like
CUDA and HIP, for NVIDIA and AMD systems. This plethora
of standards has led to a lack of well-adopted standards in
the HPC community for coding functionality and performance
portability on these different systems [4].

II. BACKGROUND

In this paper, we focus on HIP, which is a C++ based
programming model. As of June 2022 not much literature
has been published, that benchmarks the performance and
performance portability of just HIP, as it is mostly used to
draw a bridge between NVIDIAs CUDA and AMDs ROCm
platform. As pointed out by Amanda S. Dufek et.al.’s paper
[7], the performance of different models like SYCL, OpenCL
and others has already been examined by different authors and
they concluded that all the described models delivered equiv-
alent performance in relation to their theoretical peak memory
bandwidth. Also, different SYCL compilers have been de-
veloped and tested on their corresponding backends (which
includes HIP), however, these did not test HIP performance
when porting code from CUDA to the ROCm platform or vice
versa. Still, there has been promising research as mentioned in
[7], done by Homerding and Tramm, that showed competitive

1During the development of this paper the Frontier system at ORNL went
online, taking the number one spot in the latest June 2022 edition of Top500.



performance levels when comparing the implementation of
two HPC mini-apps on hipSYCL[8], an implementation of
SYCL built on top of NVIDIA CUDA/AMD HIP [9], and a
native CUDA implementation.

A. Performance portability in HPC-systems

There has been a trend from CPU-heavy supercomputers,
to those that are mainly driven by GPU computing power.
GPUs in symbiosis with CPUs have shown, that their provided
performance applies to many different applications like indus-
try, cloud and leadership computing facilities that use these
machines for nuclear weapon modelling and other research
areas [5]. The GPUs advantageous parallelism delivers much
higher throughput and better energy efficiency than current
CPUs [10]. Underlining this movement, the Summit super-
computer, currently America’s strongest computer and only
second to the Fugaku in the world ranking [3] as of November
2021, gains 97% of its 200 petaFLOP output (theoretical
peak performance) from the roughly 27000 GPUs [11], which
shows the reliance on these processing units nowadays.
The primary vendor for GPUs has been NVIDIA for the
most part [11], and their CUDA programming model has been
widely used in all highly optimized HPC GPU kernels. As of
November 2021 over 98% of all accelerators in HPC systems
come from NVIDIA [3]. Nonetheless other vendors such as
AMD and Intel have struck deals to provide hardware and
software for even stronger supercomputers. Adding to this, the
introduction of ARM on certain HPC systems, like the Fugaku,
poses even more challenges to developers. This creates the
problem of code and performance portability as described in
section I.

B. The Heterogeneous-compute Interface for Portability

Developed especially for use with C++, the HIP program-
ming framework comes with its own unique toolbox and fea-
tures, to ease development on HPC systems. The open-source
framework offers coding in a single-source C++ programming
language and includes features like templates, C++11 lambdas,
classes and namespaces, while allowing developers to use the
development environment on each target platform [12]. Not
supported by the HIP API are textures, dynamic parallelism
(CUDA 5.0), managed memory (CUDA 6.5) and graphics
interoperability with OpenGL or Direct3D and other features
[13]. For more information the AMD HIP Programming Guide
[12] and the HIP-FAQ [13] can be consulted. Although HIP
is mostly viewed as a one-time approach for porting CUDA
software to run on AMD GPUs, it can also be used extensively
as a portability layer for simultaneously targeting both AMD
and CUDA systems [14].
Programmers working on AMD and NVIDIA GPUs also use
the OpenCL programming framework, which is similar to the
HIP API. However HIP offers various advantages, like its C++
framework language, which is the same as CUDAs, allowing
for the mixing of host and device C++ code in source files and
providing additional functionality, as stated before. Also, HIP
is less verbose than OpenCL and has a similar user-experience

for CUDA-used developers.
Additionally, hipSYCL has been developed, to connect the
SYCL implementation ecosystem to existing toolchains like
HIP and CUDA. It targets any CPUs via OpenMP, NVIDIA
GPUs via CUDA, AMD GPUs via HIP/ROCm and Intel GPUs
via oneAPI Level Zero and SPIR-V. The hipSYCL compiler
can compile CUDA and HIP code in the same source file and
after compilation, creates a single binary, that can run on all
backends with the appropriate clang distributions [15].

C. Porting CUDA to HIP

HIP also includes the hipify tool [16], which allows users
to convert existing CUDA code to HIP. This can be achieved
by either using hipify-clang or hipify-perl.

1) hipify-clang: Hipify-clang offers a source-to-source
translator, that uses the clang/LLVM compiler front-end.
It creates an abstract syntax tree, that is traversed by
transformation matchers and after applying all of them,
the HIP source code is produced [16]. The clang version
can traverse very complicated constructs and parse them
successfully, or report potential errors, while providing
safe support for future CUDA versions, as it has a strong
subset of the functionality provided by CUDA. However,
the fact that any error will be reported, means that for a
successful translation, the CUDA code has to be correct.
Also, hipify-clang needs all the necessary include and define
headers to work successfully [16] and, as reported in [14],
hipify-clang did not work with CUDA version 10.1 and it did
not consider, at least partially, preprocessor macros.

2) hipify-perl: Hipify-perl is an auto-generated perl-based
script, that uses a text-based search and replace algorithm
and therefore relies heavily on regular expressions [16]. Its
advantages include ease of use, not having dependencies on
third party tools and not checking the input CUDA source code
for correctness and therefore always producing a successful
parse. However, hipify-perl still has difficulties in supporting
and is not able to transform various code constructs, like
macros expansion, namespaces, templates etc. Therefore it
may be advisable to use hipify-clang for more complicated
code-bases, but for CUDA code with basic functionality, [14]
commented, that hipify-perl seemed to work even better than
its counterpart.

III. PORTABILITY AND PERFORMANCE PORTABILITY
EVALUATION

Modern parallel programming frameworks have to provide
the programmer with the necessary portability possibilities, for
running code on different architectures, while also introducing
little overhead among the different vendor-specific program-
ming models, like CUDA, ROCm or SYCL/DPC++.

A. Approach

Most papers regarding HIP only focus on its performance as
a backend solution for running frameworks like Kokkos and

2



SYCL on AMD machines. Still, these results are sufficient
in painting a good enough picture of HIP’s performance and
portability. The chosen approach consists of taking different
papers benchmarking results and the corresponding conclu-
sions and projecting them to this paper. The variety of papers
using HIP in backend solutions, or those evaluating its actual
performance on CUDA-based systems, offer enough diversity
to draw valid conclusions. In addition, the provided sources
already nearly cover the available research regarding this topic.
For future research, own benchmarks on CUDA-based HPC
clusters, with the HIP framework, would be applicable.

B. Performance Portability

In this paragraph, we try to evaluate the performance of the
HIP programming framework. This means we have to look at
different papers that have studied its core features. As stated
in section II, these include the porting of CUDA code to
HIP via hipify and running HIP code on AMD and NVIDIA
systems. Consequently, we need to compare the performance
of applications written natively on CUDA, which are then
converted using hipify, on systems with NVIDIA and AMD
GPUs. These benchmarks then draw a picture of the eventual
overhead produced by hipify to run native CUDA code on
AMD GPUs and the other way round. Following up, in
section III-C different aspects of the porting process will be
evaluated, like ease of use and error affinity.

Fig. 1. Performance comparison of different frameworks running on the ROC
platform. The bars in each group, from left to right, represent OpenCL, HC++,
and HIP, respectively. C denotes collaborative execution. Figure from [10,
Adapted under ”free use”]

1) HIP, HC++ and OpenCL on the ROCm platform: Start-
ing with [10], which examined HIP in different benchmark
settings to evaluate its performance, we get a good idea of
HIPs performance. First collaborative performance on multiple
platforms and programming models was tested. This was
achieved using the Hetero-Mark and DNNMark benchmark
suites. Hetero-Mark provides a rich set of CPU-GPU commu-
nication and collaborative patterns, while DNNMark is used
for Deep Neural Networks targeting GPUs. More information,
on the exact benchmarks used, can be found in [10, Tab.
1]. Figure 1 shows the performance of the same workloads,
implemented using different frameworks all running on the
AMD ROCm platform. As stated in [10] the used AES, CH

and FIR benchmarks are very memory heavy, which is mir-
rored by the results, showing little actual GPU time and more
”other” time, due to the bigger memory transfers [10]. For
these benchmarks, the HC++ implementations take the longest,
while HIP manages to perform the best. This underlines the
performance advantage HIP has on its proprietary platform
ROCm. The GA and PR benchmarks show a slightly different
picture, although the performance difference for PR is mainly
attributed to the different kernel implementations, which are
necessary for each framework. Therefore the results are not
further comparable [10]. The GA benchmark on the other
hand has the same kernel implementation in both OpenCL
and HIP, however, the number of instructions executed in
both kernels differs greatly. While HIP is only using around
160K ALU instructions, the OpenCL implementation needs
around 270K ALU instructions. This indicates that the HIP
kernel compiler is more efficient than the OpenCL one [10].
Concluded from the bench-marking results the HIP kernel
compiler offers the best proprietary solution on the ROCm
platform, performance-wise, while also handling an efficient
ALU instruction footprint.

Fig. 2. Performance of HIP and CUDA running on an NVIDIA GTX
1080. The bars in each group, from left to right, represent CUDA and HIP,
respectively. Figure from [10, Adapted under ”free use”]

2) Performance of HIP and CUDA on an NVIDIA system:
Seen in figure 2 is a benchmark of HIP’s main feature,
porting CUDA code to HIP so that a unified code basis
can be run on CUDA and ROCm platforms. Here code was
ported to HIP, run on an NVIDIA system using a GTX
1080, and run natively with CUDA on the same system
[10]. The different benchmark results show that HIP adds no
noticeable overhead to the workloads and the execution time
varies from 0.93× to 1.05× of the corresponding CUDA
implementation [10]. The paper concludes, that independent
programming frameworks improve the portability, while not
leaving any performance on the table, with HIP having the
highest average performance among OpenCL and HC++
[10]. Unfortunately, this and [2] are, more or less, the
only available papers, researching HIPs performance on
NVIDIA systems in comparison to native code. Although
the results look promising, future research has to be done,
to define how useful HIP is on CUDA systems. Should
the results be replicable, code bases written in HIP could
mostly replace CUDA, as HIP is portable across architectures.

3



Fig. 3. Performance of OpenMP target offload on AMD MI100 GPUs for
nruns set to 10. Indicated are the exact times in seconds, and the slowdown
(×) compared to the HIP version for each input (small, medium, and large
ligand). Figure from [17, Adapted under ”free use”]

3) Slowdown of OpenMP target offload compared to HIP:
Another approach from [17] evaluated the performance of
AMD MI100 GPUs using HIP and OpenMP offload versions
of a molecular docking application using three different
compilers: HPE-Cray’s Cray Compiling Environment (CCE),
AMD’s ROCm compiler and the OpenMP focused LLVM-
Clang based AOMP compiler. Although for medium inputs
a near-identical performance could be achieved between
HIP and CCE dist, especially for small and large inputs,
the slowdown amounted to 1.55× and 1.47× for CCE dist
and 1.87× and 1.29× for CCE par, respectively, as seen
in figure 3 [17]. The author states that this is within an
acceptable range for portable framework solutions, although
the performance could be improved upon. A similar picture
presents itself for the OpenMP AOMP compiler, which has a
minimal slowdown of 1.22× [17]. Therefore the performance
of the native HIP version of the application, could not be
matched or exceeded by the OpenMP programming model.
As shown in [17, Fig. 10] the overall performance of HIP
on the AMD system was on-par with the respective CUDA
version, although for large inputs the application performs
better on NVIDIA’s native system. In a rapidly changing
landscape for HPC clusters with different vendors entering
the market, the use of a performance portable version of
an application may become applicable, as the performance
directives for these applications are being met on the different
GPU architectures [17]. Therefore the author concludes,
that maintaining only one version of a program may be a
valid solution in the future. This also underlines the good
performance of HIP and the use cases it manages to satisfy.

4) Simple kernels performance using HIP, OpenCL, Kokkos
and Julia: For another performance benchmark of HIP on
AMD GPUs, Wei-Chen Lin et.al.’s paper [18] compared it to

Kokkos, OpenCL and two different Julia implementations of
simple kernels. These benchmarks compare the performance of
five different memory-bandwidth bound kernels, using various
systems. This benchmark specifically, employs three different
systems with AMD GPUs, the Instinct MI100, the Instinct
MI50 and the Radeon VII. For the research of this paper, the
results achieved by the Radeon GPU are less relevant, as it
is a consumer GPU. Although the paper interprets its results
with regards to the performance of Julia in HPC systems,
the recorded outcomes provide a sufficient overview of HIPs
performance on AMD GPUs, since we get a comparison of
different parallel programming frameworks. The results in fig-
ure 4 show that HIP performance in Copy and Mul kernels is
very similar and for Add and Triad kernels, HIP and OpenCL
managed to achieve nearly even results with 76.0, 74.3, 78.5
and 76.9, 74.6, 77.5 peak memory bandwidth percentage (for
the Add kernel) respectively, while Kokkos stayed only a little
behind achieving 75.8, 71.6, 75.2 peak memory bandwidth
percentage. Only in the Dot kernel implementation OpenCL
outperformed both, with HIP taking the middle spot, between
the two others, performance-wise.

Fig. 4. BabelStream AMD GPU results. Figure from [18, Adapted under
”free use”]

Summing up the performance evaluation of HIP, it managed
to show results that matched or even exceeded other parallel
programming frameworks, when being run on AMD systems
[11,18]. Although the performance of HIP on systems by
NVIDIA was not tested thoroughly, [10] managed to show on-
par performance with native CUDA code. Shedding more light

4



on HIPs performance on CUDA-based machines, [2] presents
more in-depth graphs using GINKGO SpMV kernels and the
Conjugate Gradient Solver employing the Sellp SpMV kernels
for the Kylov subspace generation. The left and right sides of
[2, Fig. 4] only differ in the use of atomic operations. The
benchmark showed better performance for the native CUDA
implementations, although HIP provided little overhead in
most problems [2]. Interestingly for some problems, CUDA
was a lot faster than HIP, and for non-atomic operations, HIP
also managed to outperform CUDA significantly on its native
platform in some cases. However, the mean and variance of
those performance outliers [2, Fig. 6] emphasize, that they are
inconsequential, as 90% of the test cases showed less than
10% performance difference. Therefore the performance over-
head of HIP is minor, compared to CUDA implementations
on NVIDIA systems. Looking at [10, Fig. 6], the memory
management in HIP also delivers greater performance than its
corresponding counterparts in this benchmark. Even though
it is not intended to provide a universal solution for porting
code bases to any GPU platform, like Kokkos, SYCL and
OpenMP/CL, there have been developments in integrating
these frameworks with HIP. Highlighted in [19], HIPCL en-
ables the possibility of porting HIP code to OpenCL platforms,
which increases the portability as OpenCL platforms are
independent of the underlying vendor-specific architecture.
From [19, Fig. 1, Fig. 2] the performance of HIPCL and
OpenCL is shown to be identical and the introduction of
HIPCL seems to add negligible overhead. This concludes that
HIP offers a great choice performance-wise, for a parallel
programming framework for HPC systems. Although its use
is limited to running on CUDA and ROCm systems, there are
possibilities of increasing this portability, while maintaining
good performance levels.

C. Portability

Fig. 5. Converting CUDA Code to Executable Via HIP. Figure from [14,
Adapted under ”free use”]

The portability of HIP is limited to CUDA (Fig. 5) and
ROCm systems, although there are possibilities of extending
this with kernel libraries like HIPCL and hipSYCL [8,20].
While other approaches, also include portability to vendors
like Intel, or ARM systems, nearly all GPUs in HPC sys-
tems worldwide are provided by NVIDIA and AMD, with
AMD only recently setting foot in this market. Therefore the

portability offered by HIP is satisfying for most use cases,
even though many papers use frameworks on top of HIP to
benchmark the performance of applications [7,9,19,21]. Code
from CUDA can be ported to HIP in a relatively automated
fashion using hipify, as illustrated in figure 5. The HIP code
can then be executed on either AMD or NVIDIA GPUs.

Fig. 6. Percentage of lines of CUDA version of SHOC benchmark programs,
that were automatically changed, required manual changes and those that were
desirably changed. The labels are the component names (CUDA LOC/HIP
LOC). Figure from [14, Adapted under ”free use”]

1) Porting errors using hipify: The porting effort using
hipify is relatively manageable, as the philosophy of HIP was
to keep the language close enough, regarding function names,
to CUDA, so that conversion is easier [21]. This reduces
porting errors, as described in [11]. Although the conversion
process is easy, code modifications may still be needed for the
code to work properly. As can be seen in figure 6, the manual
alterations required for a working code-base vary from nearly
2.5% to as much as 29%, which means the developer may
need to spend extra time polishing the parsed code, for it to
function unhindered with the HIP framework. In this example,
these modifications can be attributed to header alterations and
code-changes from cuBLAS to hipBLAS, which is a basic
linear algebra subprograms marshalling library, with support
for cuBLAS (NVIDIA) and rocBLAS (AMD) as backend
[22]. Also, most of the desired manual changes include name
changes from CUDA to HIP in variable names, class names,
macros and filenames, which are only important for the
naming consistency of the project, but not vital to a working
application [14]. The fact that most of these modifications
are minor, make hipify a great tool for code conversion and
it shows that HIP’s portability, although limited to NVIDIA
and AMD, works great for both architectures.

2) Portability using hipSYCL and HIPCL: There has also
been a development, trying to integrate the SYCL and OpenCL
toolchain into the HIP API. As explained in [8], hipSYCL
is a modern SYCL implementation that targets CPUs and

5



GPUs. This brings maintenance and stability advantages and
allows for maximum interoperability with existing compute
platforms. HIPCL is also using the HIP API, but extends
portability to devices supporting OpenCL and SPIR-V, and
thus provides a portability path from CUDA to OpenCL [20].
So far, there has been little research exploring the porting
process and potential errors for both toolchains.

IV. DISCUSSION

HIP provides a good solution for running code on the
CUDA or ROCm platform, while also seemingly not being
limited by performance hurdles. Still, there is currently little
research focusing solely on HIP’s performance. It would be
advisable to benchmark HIP, by porting native CUDA code
via hipify to HIP and then running both on the same NVIDIA
machine. Also, the accuracy and performance of converting
code from CUDA to HIP is an interesting topic, which needs
further research, as [11] found that CUDA codes that use
numerous hardware-level optimizations may be unusable in
HIP, because direct translations may not exist. The authors
stated that manual code discovery of different syntax, usage
rules and differences in the default behaviour of functions
was required when porting code via hipify [11]. However,
this still posed to be less time-consuming than rewriting
code, when going from OpenCL to CUDA or Kokkos [11].
With multiple parallel programming frameworks competing
for general recognition and adoption in the HPC community,
this opens up a new challenge of porting code between the
different frameworks. Modern applications written for specific
HPC clusters may be able to run on various architectures, how-
ever, the adoption of new architectures from new companies
like Intel will take time. In this transition phase, translating
code from different frameworks could be necessary. In [11]
it is estimated that these translations, in this case porting
OpenCL to CUDA or Kokkos, take 2− 3 times more worker
hours, than the conversion to HIP. This can be explained by
HIP, allowing other GPU vendors, to use a similar API to
CUDA, which makes conversion faster, according to [11].
Therefore the development of universal translation frameworks
for parallel programming models would be an interesting topic
in future research if there is no agreement on a universal
standard for programming models. The lack of benchmarks for
HIP’s performance can also be attributed to the rather recent
entry of AMD into the GPU market for HPC systems. Once
Frontier [6] will go online, this might change, as the exascale
supercomputer is set to become the most powerful one yet
while relying on AMD CPU and GPUs. This means that the
ROCm platform will become more significant, which should
translate to more research interest in HIP and hipify.

V. SUMMARY AND OUTLOOK

In this paper the portability and performance portability of
HIP was presented and evaluated. Although the used sources
mostly offered an insufficient way of benchmarking HIP, they
portrayed nicely its different facets and use cases. All together
the different benchmarks gave a good outlook on how HIP

performs in real-world applications. The results indicated that
HIP offers similar performance to native CUDA implementa-
tions and as a backend solution, with frameworks like Kokkos
and SYCL, it provided great performance portability across
different platforms. Papers like [17] highlighted that it can
make a significant difference which backend solution is chosen
to enable truly performance portable programs. Overall HIP
showed the most consistent performance and also managed
to outperform native CUDA code on NVIDIA machines in
certain cases.
With the launch of supercomputers like El Capitan and
Frontier on the horizon, that are based on Intel and AMD
architectures, it is to be expected that the research in portable
programming frameworks increases. In addition papers like
[2,11] promised future research regarding HIP and its use as a
backend solution. The outlook for the future of performance-
portable solutions is looking promising as new GPU architec-
tures and programming frameworks enter the HPC ecosystem
and disrupt NVIDIA’s near-monopoly on GPUs for HPC
systems.

REFERENCES

[1] AMD, “HIP,” [Online; accessed 31-May-2022], 2022. [Online].
Available: https://github.com/ROCm-Developer-Tools/HIP

[2] Y. M. Tsai, T. Cojean, T. Ribizel, and H. Anzt, “Preparing Ginkgo
for AMD GPUs – A Testimonial on Porting CUDA Code to HIP,” in
Euro-Par 2020: Parallel Processing Workshops, B. Balis, D. B. Heras,
L. Antonelli, A. Bracciali, T. Gruber, J. Hyun-Wook, M. Kuhn, S. L.
Scott, D. Unat, and R. Wyrzykowski, Eds. Cham: Springer International
Publishing, 2021, pp. 109–121.

[3] Top500, [Online; accessed 29-May-2022], 2021. [Online]. Available:
https://www.top500.org/lists/top500/2021/11/

[4] C. Brown, A. Abdelfattah, S. Tomov, and J. Dongarra, “Design, Opti-
mization, and Benchmarking of Dense Linear Algebra Algorithms on
AMD GPUs,” in 2020 IEEE High Performance Extreme Computing
Conference (HPEC), 2020, pp. 1–7.

[5] R. Smith, “El Capitan Supercomputer Detailed: AMD CPUs & GPUs
To Drive 2 Exaflops of Compute,” [Online; accessed 29-May-2022],
2020. [Online]. Available: https://www.anandtech.com/show/15581/el-
capitan-supercomputer-detailed-amd-cpus-gpus-2-exaflops

[6] M. L. McCorkle, “U.S. Department of Energy and
Cray to Deliver Record-Setting Frontier Supercomputer at
ORNL,” [Online; accessed 29-May-2022], 2019. [Online].
Available: https://www.ornl.gov/news/us-department-energy-and-cray-
deliver-record-setting-frontier-supercomputer-ornl

[7] A. S. Dufek, R. Gayatri, N. Mehta, D. Doerfler, B. Cook, Y. Ghadar, and
C. DeTar, “Case Study of Using Kokkos and SYCL as Performance-
Portable Frameworks for Milc-Dslash Benchmark on NVIDIA, AMD
and Intel GPUs,” in 2021 International Workshop on Performance,
Portability and Productivity in HPC (P3HPC), 2021, pp. 57–67.

[8] Heidelberg University, “HIPSYCL,” [Online; accessed 01-July-2022],
2022. [Online]. Available: https://github.com/illuhad/hipSYCL

[9] B. Homerding and J. Tramm, “Evaluating the Performance of the
HipSYCL Toolchain for HPC Kernels on NVIDIA V100 GPUs,” in
Proceedings of the International Workshop on OpenCL, ser. IWOCL
’20. New York, NY, USA: Association for Computing Machinery,
2020. [Online]. Available: https://doi.org/10.1145/3388333.3388660

[10] Y. Sun, S. Mukherjee, T. Baruah, S. Dong, J. Gutierrez, P. Mohan, and
D. Kaeli, “Evaluating Performance Tradeoffs on the Radeon Open Com-
pute Platform,” in 2018 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2018, pp. 209–218.

[11] M. Thavappiragasam, A. Scheinberg, W. Elwasif, O. Hernandez, and
A. Sedova, “Performance Portability of Molecular Docking Miniapp
On Leadership Computing Platforms,” in 2020 IEEE/ACM Interna-
tional Workshop on Performance, Portability and Productivity in HPC
(P3HPC), 2020, pp. 36–44.

6

https://github.com/ROCm-Developer-Tools/HIP
https://www.top500.org/lists/top500/2021/11/
https://www.anandtech.com/show/15581/el-capitan-supercomputer-detailed-amd-cpus-gpus-2-exaflops
https://www.anandtech.com/show/15581/el-capitan-supercomputer-detailed-amd-cpus-gpus-2-exaflops
https://www.ornl.gov/news/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.ornl.gov/news/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://github.com/illuhad/hipSYCL
https://doi.org/10.1145/3388333.3388660


[12] AMD, “AMD HIP Programming Guide,” [Online; accessed 30-June-
2022], 2021. [Online]. Available: https://rocmdocs.amd.com/en/latest/
Programming Guides/HIP-GUIDE.html

[13] AMD, “HIP-FAQ,” [Online; accessed 30-June-2022], 2021.
[Online]. Available: https://rocmdocs.amd.com/en/latest/Programming
Guides/HIP-FAQ.html#hip-faq

[14] P. C. Roth, “Experiences with the Heterogeneous-compute Interface
for Portability (HIP) on OLCF Summit,” [Online; accessed 30-
June-2022], Oak Ridge National Laboratory, 2019. [Online].
Available: https://www.olcf.ornl.gov/wp-content/uploads/2019/10/Roth-
HIP-on-Summit-20191009.pdf

[15] A. Alpay and V. Heuveline, “SYCL beyond OpenCL: The Architecture,
Current State and Future Direction of HipSYCL,” in Proceedings of
the International Workshop on OpenCL, ser. IWOCL ’20. New York,
NY, USA: Association for Computing Machinery, 2020. [Online].
Available: https://doi.org/10.1145/3388333.3388658

[16] AMD, “hipfy,” [Online; accessed 31-May-2022], 2022. [Online].
Available: https://github.com/ROCm-Developer-Tools/HIPIFY

[17] M. Thavappiragasam, W. Elwasif, and A. Sedova, “Portability for GPU-
accelerated molecular docking applications for cloud and HPC: can
portable compiler directives provide performance across all platforms?”
arXiv e-prints, p. arXiv:2203.02096, Mar. 2022.

[18] W.-C. Lin and S. McIntosh-Smith, “Comparing Julia to Performance
Portable Parallel Programming Models for HPC,” in 2021 International
Workshop on Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems (PMBS), 2021, pp. 94–105.

[19] M. Babej and P. Jääskeläinen, “HIPCL: Tool for porting CUDA applica-
tions to advanced OpenCL platforms through HIP,” Proceedings of the
International Workshop on OpenCL, Apr. 2020, IWOCL / SYCLcon ;
Conference date: 27-04-2020 Through 29-08-2020.

[20] Tampere University, “HIPCL,” [Online; accessed 01-July-2022], 2021.
[Online]. Available: https://github.com/cpc/hipcl

[21] Z. Jin and J. Vetter, “Evaluating CUDA Portability with HIPCL and
DPCT,” in 2021 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), 2021, pp. 371–376.

[22] AMD, “hipBLAS,” [Online; accessed 30-June-2022], 2022. [Online].
Available: https://github.com/ROCmSoftwarePlatform/hipBLAS

7

https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-FAQ.html#hip-faq
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-FAQ.html#hip-faq
https://www.olcf.ornl.gov/wp-content/uploads/2019/10/Roth-HIP-on-Summit-20191009.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2019/10/Roth-HIP-on-Summit-20191009.pdf
https://doi.org/10.1145/3388333.3388658
https://github.com/ROCm-Developer-Tools/HIPIFY
https://github.com/cpc/hipcl
https://github.com/ROCmSoftwarePlatform/hipBLAS

	Introduction
	Background
	Performance portability in HPC-systems
	The Heterogeneous-compute Interface for Portability
	Porting CUDA to HIP
	hipify-clang
	hipify-perl


	Portability and Performance Portability Evaluation
	Approach
	Performance Portability
	HIP, HC++ and OpenCL on the ROCm platform
	Performance of HIP and CUDA on an NVIDIA system
	Slowdown of OpenMP target offload compared to HIP
	Simple kernels performance using HIP, OpenCL, Kokkos and Julia

	Portability
	Porting errors using hipify
	Portability using hipSYCL and HIPCL


	Discussion
	Summary and Outlook
	References

