OpenACC - a qualitative study

Jonas Ernst

May 2022

Abstract

OpenACC is a programming standard which lets the
programmer tell the compiler where to parallelize the
code. This approach tries to make speed-ups us-
ing GPUs easier while maintaining the same speed
than native GPU code. In this paper we will have a
look at different projects using OpenACC and anal-
yse them in terms of performance gain. We conclude
that these speed-ups can range between two to ten
times over CPU-only code depending on the systems
used. Compared to non-portable solutions OpenACC
manages to keep roughly 80% of the performance.

1 Introduction

In recent years the single thread performance of pro-
cessors (CPU) was not improving at the rate that it
used to. Also the trends in high performance comput-
ing (HPC) shifted from homogenous architectures to
heterogeneous systems with highly parallel accelera-
tor cards. For these newer systems good parallelised
applications are needed in order to utilize the full
computing power of those systems. However, devel-
oping directly for these architectures requires a lot
of manpower, is more confusing for the developer [§]
and depends on the system you are working on and
therefore is not very portable.

OpenACC is a programming standard developed by
Cray, CAPS, Nvidia and PGI and it was announced
in 2011. The standard tries to make porting code to a
graphics- or accelerator card (GPU) easier for the de-
veloper by letting the compiler do most of the heavy
lifting. The programmer just annotates the source
code where the compiler should offload the work to

the GPU by using compiler directives and API-calls.
This approach promised ease of use and with that also
implementation speed. The standard is defined for C,
C++ and Fortran and the newest release at the time
of writing is version 3.2 from November 2021. How-
ever, most compilers do not support the newest one.
For example, supported by GGC 10 and 11 is version
2.6.

In the following pages 3 different projects that use
OpenACC to offload work to the GPU will be shown.
These are then analysed what effect this program-
ming standard can achieve in terms of speed-up com-
pared to CPU-only systems. At last the portability of
OpenACC across different HPC systems will also be
taken into consideration, while comparing OpenACC
to similar projects like OpenMP.

2 Projects

2.1 Many-Fermion Dynamics-nuclear

The First Project is a configuration interaction code
[3, [6] that is used for nuclear structure calculations,
so it approximates the many-body wave function
of self-bound atomic nuclei starting with two- or
three-nucleon interactions. For this paper it not the
physics behind it are not relevant. For understanding
the computation however, it is important to know
that is the solutions to the problem statement are
a "few (five to ten) low lying eigenpairs” of a large
sparse symmetric matrix. ([6], p. 2) In iterative
implementations this would be realised using sparse
matrix vector multiplications. A parallel version for
this already exists that uses the ”Locally Optimal
Block Preconditioned Conjugate Gradient method”

(LOBPCG). This method relies on multiplication
of a sparse square matrix on a tall skinny matrix
(SpMM). This has the effect of better concurrency
and effective approximations to eigenvectors. It also
allows for a preconditioner phase which can be used
to accelerate convergance. The Code for this was
written in Fortran 90 with parallelisation consisting
of a mix of message passing interface (MPI) and
OpenMP. MPI is used to send messages between
the different tasks and processes, while OpenMP
is a project similar to OpenACC. It enables easy
multiprocessing on shared-memory devices e.g.
multi-core CPU’s by using compiler directives.
However the a major difference is that OpenMP
allows the developer to specify how to parallelize
directly(e.g. number of threads). On the other hand
in OpenACC this is done by the compiler, which
keeps easy portability accross different systems. [§]
This code was then ported to GPU accelerated
systems. OpenAcc was chosen as it keeps flexibil-
ity of running on multi-core CPUs. Furthermore
the project keeps its portability across different
architectures. The communication between different
processes still relies on MPI. The implementation of
SpMM was like the original OpenMP version due
to their similarities and the directives could just be
replaced. SpMM still needed a few changes because
the two programming standards do not always
support the same functionality. There were also
some changes made to the implementation to better
leverage the parallel computing power of GPUs. For
example, with enough memory it is easy for CPUs
to use private arrays and keep good cache locality
and therefore gain superior performance. The GPUs
on the other hand are much more constrained by
memory available per worker thread due to the order
of magnitude more in parallelism. Private arrays on
the GPU limit the amount of worker threads one
can use due to memory limitations and thus do not
harness the whole power of the GPU. Instead, the
worker threads use the shared memory pool and
index offsets.

The speed-up of this port was assessed on three
different systems.

Cori Cori Spock
GPU GDX

GPU NVIDIA NVIDIA NVIDIA
V100 A100 MI100

CPU Intel AMD | AMD
Sky- Rome | Rome
lake

GPUs/Node| 8 8 4

Bus PCle PCle PCle
3.0 4.0 4.0

per GPU | 16GB | 40 GB | 32 GB

Memory

Table 1: System tested Many-Fermion Dynamics-

nuclear on ([3] Table 1)

Vendor | Version | OpenACC | OpenMP| V100 | A100 | MI100
NVIDIA | 21.7 201711 202011 | v/ v

(2.6) (5.1)
HPE/ 12.0.1 | 201306 201511 | v/ v
Cray (2.0) (4.5)

Table 2: Compilers used for project 1 ([3] Table 2)

As you can see in Fig. and Fig. when it
works the OpenACC implementation can beat even
the best OpenMP implementation. In Fig. (1| [6] we
can see that the Eigensolver can run up to 7 times
faster on the GPU than on the CPU. More impres-
sively is the speedup during SpMM [6]. The GPU
version can achieve a speed boost of 15 to 20 times in
raw computing time and 9 to 2 times with commu-
nications and data transfers introduced by the MPI.
This difference in numbers is explained by the larger
memory requirements of a larger matrix. Because
the larger the Matrix gets, the more nodes have to
get used which leads to more resource sharing and a
larger communication overhead. Also, the time do-
ing the dense linear algebra calculations on the GPU
is almost not existent compared to the time spent in
SpMM and the precondition phase. These tests can
utilise the GPUs processors around 50% of their the-
oretical raw computing power (in FLOP/s) and the
memory around 80%. ([6] Fig. 9)

Overall performance

I SpMM
[Precondition
5 + |[C—1DenseLA

2.4x

wall clock time (sec)

1 2 3 4 5 6
test case

Figure 1: Comparison between the overall perfor-
mance of LOBPCG on GPU with that on the CPU,
taken from [6] p. 23

In Figure [2|it can be observed that array reduction
in OpenACC matches the performance of OpenMP
or is slightly worse. Nonetheless it is still preferable
to calculate these on the GPU, because otherwise one
would have to move data off the GPU to the CPU to
process them there. This is slow however and should
generally be avoided.

The developers [3] also state that the use of Ope-
nACC is good for porting OpenMP-code to GPUs,
but still needs some knowledge of the different tech-
nologies and how to best use them to get the best
results. This alignes with statement from [5]. To use
OpenAcc 1500 additional words of code (WOC) had
been used. For a native CUDA version 13000 addi-
tional WOCs were needed.

For large matrices, the total work also must be shared
more between the different computing nodes. There-
fore the effective gain in speed is limited by commu-
nication speed between the nodes (MPT).

2.2 Nek5000

The next project is called Nek5000 [9]. It is used for
high-fidelity Computational Fluid Dynamics (CFD)
which is needed to study the air around airplane

10°

102

10!

routine

0
3 / —— atomic
= 100 S
hSY = —— manual
P —— array
107t model
= —— openmp
102 ——=- openmp-loop
-+ openacc
24 25 25 210 2]2 214 216
n
10°
10?
10t
- routine
8 100 — array
S ~—— manual
10-1 —— atomic
model
—— openmp
-2
10 ——- openmp-loop
-+ Openacc
1073
24 26 28 210 212 214 216
n
103
(v ——————————————
/”—’
-
» 10! routine
5 —— array
k) —— manual

—— atomic
model

—— openmp

—==- openmp-loop
=+ openacc

24 26 28 210 212 214 216
n

Figure 2: ”Performance of array reduction with array
size of 64 (higher is better). Top: On Skylake CPUs;
Middle: On A100, where we encountered run time
errors for n > 2% with OpenMP array reduction and
a compile error with OpenMP with loops; Bottom:
On MI100, where for mn?2 > 2 32 there appears to
be a correctness error due to integer overflow on the
collapsed loops with the Cray compiler.”, taken from

B p. 17

wings, ocean currents etc. It uses the spectral el-
ement method (SEM) which partitions the simula-
tion Volume into "non-overlapping, body conforming
hexahedral subdomains called elements”. ([9] p. 3)
These are then represented by a tensor product of
”one-dimensional Lagrange interpolation polynomi-
als.” ([9]) The Nek5000 package is regarded as one
of the most used HPC frameworks in academic use
since it is development in the 1980s. It’s written in
Fortran 77 and has relied thus far on the MPI for
parallelism. This worked so far very good for CPU
calculations. However, with the current trends in
HPC going away from homogeneous general-purpose
processors to more specialised hardware the project
needed to undergo some changes to be future proof.
The authors [9] acknowledge that there are already
some other projects that do the same thing on mod-
ern hardware, but they lack the portability that the
authors want.

During the port, the developers noted a few things.
Small maths kernels are called repeatedly in a loop.
To speed up the code the loop got pushed into these
kernel calls. This increases the code complexity, be-
cause now these kernels are specific to each loop. Cal-
culation with reductions (like in Figure 2) are quite
inefficient and can be replaced by a handwritten ker-
nel (native port) to increase speed. At last, Ope-
nACC seems to be very conservative with moving
data around. [9]

The authors [9] state that this algorithm is still mem-
ory bound and therefore needs to be very cache effi-
cient to get the most speed out of the system. The
maximum size of different elements which you can
efficiently emulate is directly linked to the capacy of
available shared memory.

To compare the original implementation to the new
version different examples have been simulated. Re.
is the friction Reynolds number and the maximum
polynomial order refers to the Langrage polynom.
The speed benefit by using the GPUs on these sys-
tems can vary between from 3 to 5 times which can
be seen in Figure [3|in the top picture. The difference
between CPU and GPU gets smaller the more nodes
one enables. This effect can be explained by the de-
crease in FLOP/s when each node has less elements
to calculate.

Piz Daint | Long- JEWELS | Bezelius
horn
GPU | NVIDIA 4x 4x 8x
P100 NVIDIA | NVIDIA NVIDIA
V100 A100 A100
CPU | Intel Xeon | 2x IBM | 2x AMD | 2x AMD
E5-2690 Power 9 | EPYC EPYC
v3 7402 7742
Topo-| dragon-fly | spine dragon- fat tree
logy and leaf | fly+

Table 3: System tested Nek5000 on ([9] p. 5)

The communication between the nodes seems to be
a factor too. However, the correlation between num-
ber of elements simulated on a Node and performance
hinders strong GPU scaling the most. Nonetheless
this execution is still faster on the GPUs than it is
on the CPUs.
In the bottom diagram we can spot the difference in
calculation time of the different testing systems. Note
that the first two systems do not have the memory
requirements for 16 nodes and thus are not available
for testing.
The difference between the two A100 systems derives
mainly from the better network architecture and in-
creases the more nodes you enable. The performance
gain switching from Jewels to Piz Daint is a factor
of roughly 1.5 to 2. This is roughly the factor the of
FLOP/s and memory bandwith.
The authors [9] of the original paper conclude that
the increase in speed is less than expected by using
GPUs rather than CPUs because of the huge increase
in raw computing power. This is hindered by two
factors. First there is still a CPU only task that can
not be done in parallel thus far due to its complex-
ity. This however is hoped to be solved in the future.
Secondly moving data between CPU and GPU should
be reduced even more. This paper concludes with the
statement that the port was a success and Nek5000
can now be used with modern GPUs. The port shows
great performance improvements in speed from 3 to
5 times per node. The main limiting factor with a
larger number of nodes is the part that isn’t easily
parallelizable, neither on CPU’s, nor on GPU’s.

1000

100 \-

«»
o .
£ R
= T

10

1
16 32 64 128
Nodes
——CPU —=GPU Ideal (CPU) Ideal (GPU)

Time (s)
[T e O =)
o~ s ®

128
GPUs

——Juwels Booster —e—Berzelius Longhorn ——Piz Daint

@

Figure 3: top: "CPU and GPU performance for
Re; = 550 with maximum polynomial order N = 9,
on JUWELS Booster. Ideal scaling based on the 16
node results is also shown.;” bottom: ”Results for
Reynolds number RE,; = 360 and maximum polyno-
mial order of N =77, taken from [9] p. 7

2.3 FIuTAS

With more HPC servers upgrading to CPU-GPU sys-
tems or even GPU-only systems the developers of
FIluTAS saw the need for a modernised version of an
Navier-Stokes-equation solver. The Navier-Stockes-
equation model the interaction between fluids and
gas. So, this could be modelling a cloud, bubbles in
the water etc. ([4] p.2-3). There were already some

open-source projects for single phase codes, however
for multiphase systems (multiple fluids interaction
with each other) there was no project that utilised
the GPUs of these systems to better use the new HPC
servers. Multiphase flows model the interaction be-
tween different fluids. This is were FIuTAS [4] came
in. FIuTAS is a multiphase flow solver written in
Fortran 90 and can be run on both CPUs and GPUs.
The CPU implementation relies on MPI for its par-
allelisation while the GPU implementation uses Ope-
nACC.

For the performance test FIuTAS was evaluated at
MeluXina [2] in Luxembourg and Berzelius [I] in
Sweden. The CPU tests on the other hand were per-
formed on the Tetralith in Sweden.

8.0
--*-- Berzelius, grid-1
--e-- Berzelius, grid-2
--*-- MeluXina, grid-1
T4.01 --®-- MeluXina, grid-2
aF —— Ideal
T
e}
)
3 -
@0 2.07 e
T
n"' r’—’:’/
o __:_:’,*’
1.024 5 56 57
Number of GPUs

Figure 4: ”Strong scaling test performed on Berzelius
(black-dashed lines) and MeluXina (red-dashed lines)
clusters for two different grids: 1024 x 512 x 1024
(grid-1) and 1024 x 1024 x 1024 (grid-2). The black
continuous line indicates the ideal behavior desired
for the strong-scaling test.”, taken from [4] p.22

Figure [4|shows the speed-up one can achieve with
using more GPUs. There is always a net benefit of
using more GPUs, but that benefit gets progressively
worse the more accelerators are already in the sys-
tem. This effect is seen less with the test of grid-2

compared to grid-1 because grid-2 is bigger and thus
one GPU can be better utilised. The speed reduc-
tion compared to the ideal line can explained with
a communication increase between the GPUs. More
GPUs also lead to a "reduction in problem size on an
individual graphics card, which does not leverage the
full compute capacity of each GPU”. ([], p. 21)
The paper concludes it is preferable to use newer
systems with 80 GB of memory on each card
and NVLINK support, a NVIDIA High Bandwidth
Bridge between individual GPUs, to lower scaling is-
sues due to communication overhead.

The speed of FIuTAS was also compared between

(a) (b)

Others Others

Solver Solver

VoF

Transposes

Figure 5: ” Comparison of code-section load percent-
age on the total simulation time for GPUs (panel a)
and CPUs (panel b). The different ”slices” repre-
sent different code sections: 1) VoF (i.e. interface
reconstruction and advection, update of the thermo-
physical properties), 2) RHS (i.e. discretization of
the governing equations), 3) Transposes (i.e. trans-
pose operation in the solver), 4) Solver (i.e. only
Gaussian elimination) and others (i.e. correction
step, divergence/time-step checks, output and post-
processing routines).”, taken from [4] p. 23

a CPU system and a GPU system. One should note
however that comparisons between these are quite
complex and there is no standard way. Running
these tests on the same hardware (CPU-GPU sys-
tem) should also be avoided due to the difference in
networking architecture of a CPU to a CPU-GPU
system. Otherwise, the conclusions might be differ-
ent what you can expect on native CPU systems.

The weak scaling tests are linear when everything

happens within a single node. However, when more
nodes are required, slower communications must be
used which leads to less of a performance increase.
These tests took 0.191s on 8 GPUs vs 1.075s on 512
CPUs which means that one GPU is equivalent in
performance to roughly 359 CPUs according to these
tests.

Figure [p|shows the difference in architecture. The
CPU System spends most of its time doing for-loops
which can be done so much faster in parallel on an
accelerator card. The GPU system is mostly hin-
dered by doing transposes which can not be better
parallelised. The time it takes for both systems stays
roughly the same during these and therefore most of
the speed-up is gained in the other parts of the code
which use the GPU more effectively.

9. Portability

In this section we will take a look on how OpenAcc
keeps its performance across different systems. This
has already been intensively studied and now we are
presenting one of these studies. [7]. To measure the
portability the study defines:

> ier €ila,b,c)

Dy =
7]

with

portable model e.g. OpenACC in FLOP/s

ei(aa ba C) =

M is here the Programming model with case studies
T. e is the efficiency of a case study of application a
solving problem b on system c.

non-portable model e.g. CUDA in FLOP/s

Model Case Stud- | &, | std. | max.| min
ies dev.

OpenACC| 109 81% | 13% | 100% 51%

OpenMP | 62 81% | 14% | 100% 52%

Table 4: Performance Portability, taken from [7] p.
111

As we can see in Table [] the performance porta-
bility is quite similar to that of OpenMP. Both keep

on average around 81% of the speed compared to the
non-portable version.

4 Conclusion

The Projects before show promise using OpenACC
in porting CPU-only code to GPU-accelerated ones.
It’s easy for already developed code to be adapted for
GPUs by compiler directives, especially porting code
from already implemented OpenMP code due to the
similar approach in terms of implementation.

The generated code is portable between various ar-
chitectures when no compiler issues arise.

However, it is no magic tool. One still needs to un-
derstand the difference in architecture between GPU
and CPU systems and optimise accordingly to get
the best benefits. OpenACC shows great promise in
optimizing huge for-loops e.g. matrix operations due
to the huge potential for parallelisation. Nonethe-
less OpenACC has also the same limitations a native
port to CUDA etc. would have and one still must rely
on the system architects to limit memory bottlenecks
and/or communication overhead.

References

[1] Berzelius. https://www.nsc.liu.se/systems/
berzelius/), (accessed July 1, 2022).

[2] Meluxina.
technical-structure/,

2022).

https://luxprovide.lu/
(accessed July 1,

[3] Brandon Cook, Patrick J. Fasano, Pieter Maris,
Chao Yang, and Dossay Oryspayev. Acceler-
ating quantum many-body configuration inter-
action with directives. CoRR, abs/2110.10765,
2021.

[4] Marco Crialesi-Esposito, Nicolo Scapin, An-
dreas D. Demou, Marco Edoardo Rosti, Pedro
Costa, Filippo Spiga, and Luca Brandt. Flutas:
A gpu-accelerated finite difference code for mul-
tiphase flows, 2022.

[5] J. A. Herdman, W. P. Gaudin, S. McIntosh-
Smith, M. Boulton, D. A. Beckingsale, A. C.
Mallinson, and S. A. Jarvis. Accelerating hy-
drocodes with openacc, opencl and cuda. In 2012
SC Companion: High Performance Computing,
Networking Storage and Analysis, pages 465-471,
2012.

[6] Pieter Maris, Chao Yang, Dossay Oryspayev, and
Brandon Cook. Accelerating an iterative eigen-
solver for nuclear structure configuration interac-
tion calculations on gpus using openacc. CoRR,
abs/2109.00485, 2021.

[7] Ami Marowka. On the performance portability of
openacc, openmp, kokkos and raja. In Interna-
tional Conference on High Performance Comput-
ing in Asia-Pacific Region, HPCAsia2022, page
103-114, New York, NY, USA, 2022. Association
for Computing Machinery.

[8] R. Usha, Prachi Pandey, and N. Mangala. A com-
prehensive comparison and analysis of openacc
and openmp 4.5 for nvidia gpus. In 2020 IEEE
High Performance Extreme Computing Confer-
ence (HPEC), pages 1-6, 2020.

[9] Jonathan Vincent, Jing Gong, Martin Karp,
Adam Peplinski, Niclas Jansson, Artur Podobas,
Andreas Jocksch, Jie Yao, Fazle Hussain, Stefano
Markidis, Matts Karlsson, Dirk Pleiter, Erwin
Laure, and Philipp Schlatter. Strong scaling of
openacc enabled nek5000 on several GPU based
HPC systems. CoRR, abs/2109.03592, 2021.

https://www.nsc.liu.se/systems/berzelius/
https://www.nsc.liu.se/systems/berzelius/
https://luxprovide.lu/technical-structure/
https://luxprovide.lu/technical-structure/

	Introduction
	Projects
	Many-Fermion Dynamics-nuclear
	Nek5000
	FluTAS

	Portability
	Conclusion

