
Performance Portability of OpenMP
Daniel Malik

Technical University of Munich

July 5, 2022

Abstract

In recent years, the focus in HPC has changed towards accelerator devices such as GPUs. Because of this
change, the demand and importance of performance portability is steadily increasing. Developers want to use
their code on a variety of different devices without having to make many specific changes to it. Additionally,
the performance and efficiency of the code should remain similar after porting. In this paper we are taking
a closer look at OpenMP and its base functionalities before analyzing its performance and portability and
comparing it to different other options.

1. Introduction

The OpenMP API was originally created
in the 1990s by a group of vendors. Its
main purpose was to standardize no-

tations for specifying how tasks should be
mapped to individual processors. The first
version could only be used with Fortran while
support for C and C++ was added later. Since
then, OpenMP developed to a modern, easy
to use API that can be utilized to specify high-
level parallelism on shared memory multipro-
cessors. Apart from a set of compiler directives
it also contains environmental variables and
library routines to do so. To date OpenMP is
still supported by major CPU and GPU ven-
dors as well as many popular compilers.[1]
In the second section of the paper, we first
present how to implement OpenMP into an ex-
isting sequential program. For Subsection 2.2
we explain the basic functionalities of the API
before presenting multiple supported types of
parallelism in Subsection 2.3. The third section
compares sequential code with its parallelized
counterpart to describes and analyze the per-
formance of OpenMP. Section 4 focuses on the
portability of OpenMP source code while spe-
cializing on GPU offloading in Subsection 4.1.
The performance portability is evaluated in
Subsection 4.2 and OpenMP’s role on mod-
ern supercomputer architecture is presented in

Subsection 4.3. In the fifth section we compare
OpenMP to other options that can be used to
specify parallelism.

2. Usage of OpenMP

2.1. Implementation

One of the key reasons for OpenMP’s popu-
larity is its simplicity. We first want to look
at a base implementation before introducing
additional features that can be added to further
improve parallelization and performance.
OpenMP is built into the compiler so there
are no additional libraries that need to be in-
stalled. The API can be utilized by simply
adding the header in C and C++ or using the
module for Fortran. Programmers can then in-
sert high-level directives into the sources code
as comments in Fortran or pragmas in C/C++.
The low-level details are hidden, making the
code more compact and easier to read. Fi-
nally, to run the code with OpenMP enabled
it must first be compiled with the appropri-
ate flag. There is a wide range of compilers
that support OpenMP most notably GCC or
Clang.[2] Listing 1 shows a simple parallelized
“Hello, World!” program with OpenMP. How
often “Hello, World!” is written to standard out
depends on the number of cores of the CPU.

1



Listing 1: Parallel "Hello, World!" with OpenMP

1 #include <stdio.h>

2 #include <omp.h>

3

4 int main(void)

5 {

6 #pragma omp parallel

7 {

8 printf("Hello , World!\n");

9 }

10 return 0;

11 }

2.2. Functionality

Apart from the creation of threads, OpenMP
offers more parallelization functionalities. In
this subsection we want to introduce some of
these main features for parallelizing more com-
plex programs. The OpenMP directives allow
programmers to:

• differentiate between parallel and serial
regions

• define how loops should be parallelized
• state if variables are supposed to be pri-

vate or shared
• specify how the work is scheduled be-

tween threads

In regards of memory management OpenMP
offers classifiers for private and shared vari-
ables. When using private ones, a copy of
them is created for each process while shared
variables have one instance for all processes.
Variables created within parallel regions are
private by default while the ones created in
sequential regions are shared by default.[3]
When using shared variables there is always
the risk of conflicting accesses. OpenMP uses
event synchronization and mutual exclusion
as well as other synchronization constructs as
prevention. Mutual exclusion gives a thread
exclusive access to a variable while event syn-
chronization can be established by so called
"barriers" in the code at which threads have

to wait until all other threads have arrived.
To avoid simultaneous writing to memory the
atomic construct can be used to force any mem-
ory update in the next instruction to happen
atomically.[3] For our example in Listing 1 the
parallel threads writing to standard out can
possibly create a race condition leading to un-
intended outputs. To fix this issue we could
add a Mutex for standard out.
Additionally, when defining parallel parts of
the serial code the user can incrementally par-
allelize with OpenMP. The high-level directives
can be inserted only into some areas of the
code while leaving others sequentially. If the
code compiles and tests on it were successful
another portion can be parallelized. This pro-
cess can be repeated until the required speedup
is achieved.[2]

2.3. Types of parallelism

OpenMP supports different types of paral-
lelism. Generally, these can be grouped into
data and task parallelism. Data parallelism
uses the same instructions on different data
simultaneously while task parallelism splits
the code into tasks that are then computed in
different threads. A well-known type of data
parallelism is loop-level parallelism. A typical
example is a loop iterating over an array
while modifying the entries independently.
Because of this independency the order of
the iterations is irrelevant and therefore they
can be split on several threads and executed
simultaneously. The same can be done for
independent nested loops such as an iteration
over a multidimensional array. OpenMP
offers a clause to collapse the two loops
into one which can improve the run-time
performance by removing loop overhead.
Another supported type is nested parallelism.
If a region of the code is already executed in
parallel by a team of threads and one of them
encounters a parallel construct the thread can
create a new team becoming the master of
that team. An example where nested paral-
lelism is often used are recursive algorithms.[1]

2



3. Performance

After getting a basic understanding of
OpenMP’s core functionalities we now want
to analyze its performance compared to a se-
rial program. The improve in performance is
highly dependent on the type of algorithm that
is to be parallelized as well as the architecture
the code is executed on. Therefore, the follow-
ing example feature two different algorithms
that were executed on hardware that enables
strong parallelization.
The performance-benchmark [4] that was exe-
cuted on two 24-core Intel Xeon Platinum 8160
CPUs analyzed the Speedup using task par-
allelization on two mathematical procedures.
The performance of OpenMP’s loop construct
was compared to task-based implementations
both with and without dependences. The de-
pendences allow specified tasks to start oper-
ating immediately after the prior tasks they
depend on have finished. This is an upgrade
compared to the common task-based imple-
mentation which need to use the barrier con-
struct introduced earlier. Figure 1 shows the
performance in relation to a serial implemen-
tation highlighting the advantage that depen-
dences can provide as well as displaying how
well OpenMP can speed up the computation
of these highly parallelizable algorithms.

4. Portability

To compute algorithms that allow strong paral-
lelization even more efficiently, programmers
must resort to hardware other than CPUs, like
accelerator devices. Even though OpenMP was
initially designed for parallelization on CPUs,
the support for offloading Code to GPUs was
added with OpenMP 4.0 in 2013.[5] In the fol-
lowing three subsections we want to introduce
GPU offloading with OpenMP and compare
its performance to its non-ported version on
the CPU as well as discuss OpenMP’s role on
supercomputers.

Figure 1: Performance comparison: Loops, Tasks and
Dependences to serial; 2x 24-core Intel Xeon
Platinum 8160 CPUs [4]

4.1. GPU offloading

While CPUs are optimized for serialized tasks
GPUs have many cores for enhanced parallel
throughput computations. While design can
vary greatly depending on the hardware man-
ufacturer and version of the GPU, a typical one
consists of multiple streaming multiprocessors
each containing many cores collaborating via
shared memory. The cores themselves have
thread blocks consisting of multiple threads.
Usually, threads of the same block can only
perform the same task simultaneously so they
can exclusively be used for data parallelism
while task parallelism can be done between the
cores or streaming multiprocessors.[6]
Porting code to a GPU can be done with the tar-
get construct of OpenMP. This directive brack-
ets an executable region to be run on the of-
floading device. Within the target region the
data access is specified. This is necessary be-
cause GPUs have their own memory to which
the data must be copied before calculation. In
OpenMP this can be done by using the map
clauses with the following syntax:

map(map − type : list)

where list can be a pointer to the data section
or an array. For the latter, an array section can
be specified. The map-type can be one of the

3



Table 1: Compilerflags [8]

Flags Clang/Cray/AMD GCC/GFortran

OpenMP flag -fopenmp -fopenmp
Offload flag -fopenmp-targets=<target> -foffload=<target>

Target NVIDIA nvptx64-nvidia-cuda nvptx-none
Target AMD amdgcn-amd-amdhsa amdgcn-amdhsa

GPU Architecture -Xopenmp-target -march=<arch> -foffload=”-march=<arch>

following:

• to – copy data to the device at the start of
the target region

• tofrom – copy data to the device at the
start of the target region and from the de-
vice at the end of it

• from – copy data from the device at the
end of the target region

• alloc – created space for input on the de-
vice at the start of the target region

• delete – delete allocated data on the device

The default map-type is tofrom.[6]
The compiler additionally must be instructed
to generate GPU-specific code and the target
GPU architecture must be specified. To do so
the right compiler flags must be set on compila-
tion. OpenMP is supported by major GPU ven-
dors like Nvidia or AMD. For those two Table 1
taken from an article [7] shows the appropriate
compilation flags for different compilers.

4.2. Performance portability

Performance portability is key when offload-
ing work to the GPU. If the code does not run
efficiently on the target architecture, the main
reason for offloading is gone.
In an article [8] from 2019 the performance
portability was evaluated using 4 NVIDIA
Tesla V100 GPUs with 16 GB memory each.
The GPUs competed against an IBM Power9
CPU. For the first test the evaluation of the
following equation with 3 single-dimensional
arrays is used as an example for a memory-
intensive benchmark:

A[i] = B[i] + constant ∗ C[i]

Due to the high amount of memory transfer
between the CPU and GPUs overshadowing
the actual compute part the CPU clearly out-
performed the GPUs regardless of the selected
array size. This benchmark emphasizes the
weakness of GPU offloading.
As a second benchmark a simple two-
dimensional matrix multiplication which is
both compute and memory intensive was exe-
cuted on the same hardware. While the CPU
was still faster for smaller matrices the GPUs
caught up at a size of about 1300 x 1300. Due
to the large amount of possible parallelization,
the required time of the GPUs remained con-
stant up to very large matrices while the ex-
ecution time on the CPU increased by O(N³).
For a 3000 x 3000 matrix a speedup of 6 was
archived.
Another benchmark done in a Case Study for
Performance Portability [6] used OpenMP 4.5
on a P100 GPU to implement a General Plas-
mon Pole (GPP) kernel for a comparison be-
tween an atomic implementation and one with
reduction clauses from OpenMP. The GPP ker-
nel featured 3 nested for-loops where the two
most outer loops of the kernel were collapsed
and parallelized over the thread blocks of the
GPU. The iterations of inner loop were dis-
tributed to the individual threads. With the
kernels main computational bottlenecks being
dense linear algebra, large reductions, and fast
Fourier transformations a speedup of 3 was
achieved compared to a serial implementation.

4.3. Modern supercomputers

For even greater scaling, modern supercom-
puter architecture is the limit. A typical super-

4



computer has multiple compute-clusters con-
taining multiple nodes consisting of several
sockets, each of which has a CPU with mul-
tiple processor cores. The clusters and nodes
are coupled via high-speed interconnects while
the CPUs within a node use shared memory.
This type of architecture has multiple levels
of parallelism. When using OpenMP alone on
one of these architectures the problem arises
that there is only distributed memory between
the nodes and clusters. There are approaches
to use OpenMP with these types of systems as
well but the partitioning and placing of data
onto the distributed memories must be done
separately for example with MPI. This forms a
so-called hybrid model where OpenMP is used
for parallelizing within the nodes and MPI for
communication between them. Another op-
tion is a in 2006 developed compiler add-on
by Intel called “Cluster OpenMP”. The add-on
enables the user to create OpenMP flush points
automatically or manually at which memory
pages are kept coherent between the nodes by
a protocol.[9]
To evaluate the scalability of OpenMP for su-
percomputers, a paper [10] evaluated the per-
formance of a disjunctive normal form (DNF)
algorithm to compute the power set on the
Skylake compute node of the Stampede2 su-
percomputer. The authors showed that the
speed-up of the DNF algorithm with OpenMP
scaled linear with the number of Cores. This
example emphasizes the scalability of OpenMP
up to large numbers of cores.

5. Comparison

The OpenMP API is by no means the only
tool available for realizing parallelization and
offloading Code to accelerator devices. To put
OpenMP in a broader context we will now
compare it with two other popular options.

5.1. OpenACC

OpenMP and OpenACC are very similar in
many regards. Both are directive APIs for par-
allel programming, support similar types of

parallelism and the same programming lan-
guages. They share their simplicity, are sup-
ported by most hardware and compilers, and
perform similar in most benchmarks. A perfor-
mance analysis [11] of CUDA, OpenACC and
OpenMP on a TESLA V100 GPU showed sim-
ilar results for both OpenACC and OpenMP
with a slight lead for OpenACC.
Even though OpenMP and OpenACC have
much in common, the two APIs were initially
built for different purposes. OpenMP was de-
signed to parallelize Code on CPUs while Ope-
nACC was created for accelerator devices. Be-
cause of this OpenMP gives the compiler and
optimizer less flexibility, leaving parallelization
and scheduling responsibilities to the program-
mer. A typical decision that the compiler can
still make is to determine how many threads
to create if the programmer does not specify
otherwise. OpenACC on the other hand al-
lows the compiler to choose between common
parallelization options like SIMD or threads
based on the underlying hardware. Neverthe-
less, OpenMP’s offloading features have im-
proved in recent years, offering an available
alternative to OpenACC.[12]

5.2. CUDA

Compared to OpenMP, CUDA is a low-level
programming model. The prior named per-
formance analysis [11] shows that the perfor-
mance of both CUDA and OpenMP is similar
for simple parallel test cases. For more com-
plex code on the other hand a significant gap
was observed. A test case on sum reduction
memory access patterns showed that OpenMP
was up to 80% slower than CUDA. Especially
on large data inputs OpenMP and OpenACC
struggled to keep up with CUDA. The authors
of the performance analysis believe that com-
piler optimization is the key of closing that
gap.
Because of its low-level programming model
CUDA is far more complex to use. It requires
prior knowledge and a deeper understanding.
To port an existing C program, the program-
mer needs to make changes directly into the

5



code, for example to function-calls for memory
allocation, resulting in much higher porting
effort. Another big drawback is the fact that
CUDA is limited exclusively to NVIDIA hard-
ware. The choice between CUDA and OpenMP
therefore depends mostly on the architecture
as well as the kind of application.[12]

6. Conclusion

In this paper we summarized the base function-
ality of OpenMP before focusing onto portabil-
ity to modern supercomputers and especially
GPUs. The performance of OpenMP optimized
code was compared to sequential code showing
huge potential for speedup. Finally, a compar-
ison was drawn with OpenACC and CUDA
highlighting that despite weaker performances
OpenMP can score its simplicity and general
support on many types of hardware. OpenMP
has not lost its relevance in the parallelization
of programs to this day. Despite its age, the
OpenMP ARB ensures that OpenMP is sup-
ported on the latest hardware making it a safe
option for many years to come.

References

[1] M. van Waveren, M. Klemm, M. Wong,
J. Hoeflinger, A. Fritsch, K. Mattson,
R. Friedman (2022). “OpenMP FAQ”.
openmp.org. https://www.openmp.org/

about/openmp-faq/#Document (accessed
June. 27, 2022).

[2] B. Chapman, G. Jost, R. van der
Pas (2008). “Using OpenMP”.
pdfs.semanticscholar.org. https:

//pdfs.semanticscholar.org/932d/

5abe3d49f3c49d77c6e60ddbd0e3dfcae8dd.

pdf (accessed June. 27, 2022).

[3] OpenMP Architecture Review Board
(2021). “OpenMP Application Program
Interface”. openmp.org. https://

www.openmp.org/wp-content/uploads/

OpenMP-API-Specification-5-2.pdf

(accessed May. 24, 2022).

[4] B. de Supinski, T. Scogland, A. Duran,
M. Klemm, S. Bellido, S. Olivier, C.
Terboven, T. Mattson (2018). “The
Ongoing Evolution of OpenMP”. iee-
explore.ieee.org. https://ieeexplore.

ieee.org/abstract/document/8434208

(accessed June. 26, 2022).

[5] S. Bak, C. Bertoni, S. Boehm, R. Budiardja,
B. Chapman, J. Doerfert, M. Eisenbach,
H. Finkel, O. Hernandez, J. Huber
et al. (2022). “OpenMP application
experiences: Porting to accelerated
nodes”. sciencedirect.com. https:

//www.sciencedirect.com/science/

article/pii/S0167819121001009 (ac-
cessed June. 13, 2022).

[6] R. Gayatri, C. Yang, T. Kurth, J.
Deslippe. “A Case Study for Per-
formance Portability using OpenMP
4.5”. sc18.supercomputing.org.
https://sc18.supercomputing.org/

proceedings/workshops/workshop_

files/ws_waccpd109s2-file1.pdf

(accessed May. 31, 2022).

[7] F. Robertsén, O. Louant, G. Markomanolis
(2021). “Offloading code with compiler
directives”. ilumi-supercomputer.eu.
https://www.lumi-supercomputer.eu/

offloading-code-with-compiler-directives/

(accessed June. 17, 2022).

[8] A. Nitsure, H. Shrivastava, P. Dsouza
(2019). “GPU programming made
easy with OpenMP on IBM POWER
– part 1”. developer.ibm.com.
https://developer.ibm.com/articles/

gpu-programming-with-openmp/#ref1

(accessed June. 12, 2022).

[9] G. Hager, G. Jost, R. Rabenseifner (2009).
“Communication Characteristics and
Hybrid MPI/OpenMP Parallel Program-
ming on Clusters of Multi-core SMP
Nodes”. www3.nd.edu. https://www3.

nd.edu/~zxu2/acms60212-40212-S12/

Cray09-hybrid-MPI-OpenMP.pdf (ac-
cessed May. 31, 2022).

6

https://www.openmp.org/about/openmp-faq/#Document
https://www.openmp.org/about/openmp-faq/#Document
https://pdfs.semanticscholar.org/932d/5abe3d49f3c49d77c6e60ddbd0e3dfcae8dd.pdf
https://pdfs.semanticscholar.org/932d/5abe3d49f3c49d77c6e60ddbd0e3dfcae8dd.pdf
https://pdfs.semanticscholar.org/932d/5abe3d49f3c49d77c6e60ddbd0e3dfcae8dd.pdf
https://pdfs.semanticscholar.org/932d/5abe3d49f3c49d77c6e60ddbd0e3dfcae8dd.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://ieeexplore.ieee.org/abstract/document/8434208
https://ieeexplore.ieee.org/abstract/document/8434208
https://www.sciencedirect.com/science/article/pii/S0167819121001009
https://www.sciencedirect.com/science/article/pii/S0167819121001009
https://www.sciencedirect.com/science/article/pii/S0167819121001009
https://sc18.supercomputing.org/proceedings/workshops/workshop_files/ws_waccpd109s2-file1.pdf
https://sc18.supercomputing.org/proceedings/workshops/workshop_files/ws_waccpd109s2-file1.pdf
https://sc18.supercomputing.org/proceedings/workshops/workshop_files/ws_waccpd109s2-file1.pdf
https://www.lumi-supercomputer.eu/offloading-code-with-compiler-directives/
https://www.lumi-supercomputer.eu/offloading-code-with-compiler-directives/
https://developer.ibm.com/articles/gpu-programming-with-openmp/#ref1
https://developer.ibm.com/articles/gpu-programming-with-openmp/#ref1
https://www3.nd.edu/~zxu2/acms60212-40212-S12/Cray09-hybrid-MPI-OpenMP.pdf
https://www3.nd.edu/~zxu2/acms60212-40212-S12/Cray09-hybrid-MPI-OpenMP.pdf
https://www3.nd.edu/~zxu2/acms60212-40212-S12/Cray09-hybrid-MPI-OpenMP.pdf


[10] R. Goodwin (2021). “Linearizing Com-
puting the Power Set with OpenMP”.
ieeexplore.ieee.org. https://ieeexplore.
ieee.org/document/9460698 (accessed
June. 21, 2022).

[11] M. Khalilov and A. Timoveev (2021). “Per-
formance analysis of CUDA, OpenACC
and OpenMP programming models on
TESLA V100 GPU”. iopscience.iop.org.
https://iopscience.iop.org/article/

10.1088/1742-6596/1740/1/012056

(accessed June. 17, 2022).

[12] R. Usha, P. Pandey, N. Mangala
(2020). “A Comprehensive Com-
parison and Analysis of OpenACC
and OpenMP 4.5 for NVIDIA GPUs”.
ieeexplore.ieee.org. https://ieeexplore.
ieee.org/document/9286203 (accessed
June. 19, 2022).

7

https://ieeexplore.ieee.org/document/9460698
https://ieeexplore.ieee.org/document/9460698
https://iopscience.iop.org/article/10.1088/1742-6596/1740/1/012056
https://iopscience.iop.org/article/10.1088/1742-6596/1740/1/012056
https://ieeexplore.ieee.org/document/9286203
https://ieeexplore.ieee.org/document/9286203

	Introduction
	Usage of OpenMP
	Implementation
	Functionality
	Types of parallelism

	Performance
	Portability
	GPU offloading
	Performance portability
	Modern supercomputers

	Comparison
	OpenACC
	CUDA

	Conclusion

