
1/13

OpenMP

Daniel Malik

Technical University of Munich
Garching

July 5, 2022



2/13

Structure

General Information

Implementation

Functionalities

Performance

Portability

Comparison

Summary



3/13

General Information

▶ Fortran, C and C++ supported
▶ Offloading added with OpenMP 4.0
▶ Exclusive to shared memory systems
▶ Highly popular



4/13

Implementation

▶ Enabled with
compilerflag

▶ Add header / module
▶ High-level directives as

pragmas / comments

gcc -fopenmp hello.c

1 #include <stdio.h>
2 #include <omp.h>
3

4 int main(void)
5 {
6 #pragma omp parallel
7 {
8 printf("Hello!\n");
9 }

10 return 0;
11 }



5/13

Synchronization

▶ Private and shared variables
▶ Mutex on shared variables with atomic statement
▶ Event synchronization with barrier construct



6/13

Types of Parallelism

▶ Data parallelism
▶ Loop-level parallelism
▶ Loop collapse

▶ Task parallelism



7/13

Performance

▶ Dependences for better
task scheduling

▶ Two Intel Xeon Platinum
with 24 cores each

Bronis R. de Supinski et al. (2018)

Bronis R. de Supinski et al. (2018)



8/13

GPU architecture and memory management

▶ Compilerflags for
offloading and to specify
target architecture

▶ Memory management
with map clauses

▶ Bracket code to be
offloaded with target
construct

map (map-type : list)

Moises Hernandez Fernandez et al. (2013)



9/13

GPU offloading

▶ 4 NVIDIA Tesla V100
GPUs, 16GB memory
each

▶ IBM POWER9 CPU
with 24 Cores

Vector multiplication

Matrix multiplication

Aditya Nitsure et al. (2019)



10/13

Supercomputers

▶ Hybrid model with MPI
▶ Cluster OpenMP
▶ Scalable up to high number of cores

Xiankun Miao et al. (2015)



11/13

OpenACC

▶ Share simplicity
▶ Similar performance
▶ More compiler flexibility than OpenMP



12/13

CUDA

▶ Low-level programming model
▶ Rewrite existing Code for porting
▶ Exclusive to NVIDIA hardware
▶ Better performance for more complex programs



13/13

Summary

▶ High-level language for specifying parallelism
▶ Easy to use
▶ Allows offloading code to GPUs
▶ Used on Supercomputers because of its scalability
▶ Good performance for simple programs


	General Information
	Implementation
	Functionalities
	Synchronization
	Types of Parallelism

	Performance
	Portability
	GPU architecture and memory management
	GPU offloading
	Supercomputers

	Comparison
	OpenACC
	CUDA

	Summary

