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General Information

▶ Fortran, C and C++ supported
▶ Offloading added with OpenMP 4.0
▶ Exclusive to shared memory systems
▶ Highly popular
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Implementation

▶ Enabled with
compilerflag

▶ Add header / module
▶ High-level directives as

pragmas / comments

gcc -fopenmp hello.c

1 #include <stdio.h>
2 #include <omp.h>
3

4 int main(void)
5 {
6 #pragma omp parallel
7 {
8 printf("Hello!\n");
9 }

10 return 0;
11 }
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Synchronization

▶ Private and shared variables
▶ Mutex on shared variables with atomic statement
▶ Event synchronization with barrier construct
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Types of Parallelism

▶ Data parallelism
▶ Loop-level parallelism
▶ Loop collapse

▶ Task parallelism
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Performance

▶ Dependences for better
task scheduling

▶ Two Intel Xeon Platinum
with 24 cores each

Bronis R. de Supinski et al. (2018)

Bronis R. de Supinski et al. (2018)
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GPU architecture and memory management

▶ Compilerflags for
offloading and to specify
target architecture

▶ Memory management
with map clauses

▶ Bracket code to be
offloaded with target
construct

map (map-type : list)

Moises Hernandez Fernandez et al. (2013)



9/13

GPU offloading

▶ 4 NVIDIA Tesla V100
GPUs, 16GB memory
each

▶ IBM POWER9 CPU
with 24 Cores

Vector multiplication

Matrix multiplication

Aditya Nitsure et al. (2019)
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Supercomputers

▶ Hybrid model with MPI
▶ Cluster OpenMP
▶ Scalable up to high number of cores

Xiankun Miao et al. (2015)
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OpenACC

▶ Share simplicity
▶ Similar performance
▶ More compiler flexibility than OpenMP
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CUDA

▶ Low-level programming model
▶ Rewrite existing Code for porting
▶ Exclusive to NVIDIA hardware
▶ Better performance for more complex programs
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Summary

▶ High-level language for specifying parallelism
▶ Easy to use
▶ Allows offloading code to GPUs
▶ Used on Supercomputers because of its scalability
▶ Good performance for simple programs
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