
Hackathon:Arm SME boosting performance of AI
and other applications on CPUs

M. H. Biniaz (mbiniaz@gwdg.de)
S. Madde (shrinath.madde@gwdg.de)

GWDG | OEHI

20-06-2025 HPC AI Team GWDG & OEHI

)



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

Who am I?

(M.) Hossein Biniaz

■ AI Researcher at AG Computing GWDG since
2021.

■ Research interests:

▶ Scientific algorithms
▶ Distributed computing
▶ Federate LLMs
▶ Computational finance

■ Mission statement:

▶ Make mathematical stuff run faster on hardware.
▶ Make AI available to everyone via software.

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 2 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

Who am I?

Shrinath Madde

■ Master’s student of Applied Data Science
at the University of Göttingen.

■ Key Interests:

▶ Machine Learning
▶ Data Engineering
▶ High-Performance Computing

■ Career Goal:

▶ To apply data science to solve real-world
problems efficiently.

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 3 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

Table of contents

1 Introduction: The Need for Speed

2 A Historical Journey of Vector Processing

3 The Rise of Scalable Vectors

4 Algorithms

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 4 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

Introduction: The Need for Speed

■ What is Vector Processing?

▶ A class of parallel computing where a single
instruction operates on multiple data points
simultaneously (SIMD).

▶ In contrast to scalar processing, where one
instruction operates on one piece of data.

■ Why it’s Important:

▶ Efficiency: Greatly accelerates tasks with
repetitive operations on large datasets.

▶ Performance: Boosts performance in
multimedia, scientific computing, and
machine learning.

▶ Power Savings: Processing more data
with fewer instructions can lead to lower
power consumption.

Image generated with ChatGPT (AI-generated)

Scalar vs. Vector (SIMD) Processing

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 5 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

Scalar vs. Vector: A Tale of Two Additions

Scalar Addition (The Old Way )

// Goal: C[i] = A[i] + B[i];

// Must loop through each
// element one by one.

for (int i=0; i<4; i++) {
C[i] = A[i] + B[i];

}

Note: This requires four separate "add" operations and loop overhead.

Vector Addition (The SIMD Way )

// Goal: Add two vectors.
// (Using Intel SSE intrinsics)

// Load 4 elements at once
__m128 vecA = _mm_load_ps(A);
__m128 vecB = _mm_load_ps(B);

// Add all 4 elements
// in one instruction
__m128 vecC = _mm_add_ps(vecA, vecB);

Note: This performs all four additions in a single, highly efficient instruction.

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 6 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

x86 SIMD: MMX (MultiMedia eXtensions)

■ Introduced by Intel in 1997 with Pentium MMX.

■ Purpose: Accelerate multimedia and
communication tasks.

■ Key Features:

▶ 8 new 64-bit registers (MM0-MM7).
▶ For example, you could pack eight 8-bit integers

into one register. This meant you could, in
theory, perform eight calculations at the same
time.

▶ Registers aliased onto x87 FPU registers.The
clever, but also problematic

Image generated with ChatGPT (AI-generated)

MMX registers aliased onto x87 FPU registers.

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 7 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

x86 SIMD: MMX – Limitations

■ Integer-only: Did not support floating-point SIMD operations.

■ FPU State Sharing: Register aliasing with the x87 FPU caused significant
context switching overhead when switching between MMX and
floating-point operations.

■ Limited Vector Width: The 64-bit vector width was quickly outgrown., which
was relatively small compared to later SIMD extensions.

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 8 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

SIMD Feature Comparison

Feature SSE AVX AVX2 AVX-512

Intro Year ~1999 ~2011 ~2013 ~2015

Vector Width 128-bit 256-bit 256-bit 512-bit

Registers 8 16 16 32

3-operand? × (2-op) ✓ ✓ ✓

Integer SIMD Partial (SSE2+) Float only Full Full

FMA (Fused
Multiply-Add)

× × ✓ ✓

Masking/
Predication

× × × ✓ (per-lane)

Power Impact Low Higher Higher • Very High
(downclock)

Use Case Graphics, Basic
Math

HPC, General
Vector

HPC, ML Inference HPC, ML,
Datacenter

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 9 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

SIMD Features

■ 3-Operand Instructions
▶ This is a huge deal for programming efficiency. Instead of an operation like A = A + B,

which overwrites and destroys your original ‘A‘ data, you can perform a
non-destructive operation like C = A + B.

▶ This keeps your original sources (‘A‘ and ‘B‘) available for other calculations, making
code cleaner and more flexible.

■ Fused Multiply-Add (FMA)
▶ FMA combines a multiplication and an addition into a single, ultra-fast hardware

instruction: Result = (A * B) + C.

▶ This is faster and more precise than doing the two operations separately. It has become
a cornerstone of modern High-Performance Computing (HPC) and Machine
Learning.

■ Masking (Predication)
▶ Masking lets you selectively apply an operation to only the specific data elements you

care about within a vector.
M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 10 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

PowerPC: AltiVec (Velocity Engine)

■ Introduced: 1998 by the AIM alliance (Apple, IBM, Motorola). First appeared in the
PowerPC G4.

■ A RISC Approach: A powerful and flexible SIMD instruction set for the PowerPC
architecture.

■ Key Features:

▶ A dedicated set of 32 128-bit vector registers.
▶ Rich instruction set supporting both integer and floating-point data.
▶ A flexible permute engine (‘vperm‘), which was a standout feature for complex data

shuffling.

■ Impact:

▶ A key selling point for Apple’s Power Mac G4/G5 systems (especially in creative apps like
Photoshop).

▶ Showcased the power of a well-designed SIMD architecture beyond basic multimedia.
▶ Found in many game consoles (Xbox 360, PS3) and embedded systems.

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 11 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

ARM NEON: SIMD for the Mobile Revolution

■ Introduced: With the ARM Cortex-A8 processor, as part of the ARMv7 architecture.

■ SIMD for Mobile: Brought powerful SIMD capabilities to the world of mobile and
embedded devices.

■ Key Features:

▶ 128-bit Registers: A dedicated register file with 128-bit registers.
▶ Flexible Data Processing: Supports a wide range of integer and single-precision

floating-point operations.
▶ Tightly Coupled with ARM Core: Designed for efficient and low-power media

processing.

■ Impact:

▶ Crucial for the smartphone revolution (video, gaming, imaging).
▶ Now a standard feature in modern ARM Cortex-A series processors.
▶ Key technology for mobile, automotive, and server applications.

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 12 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

The Challenge: A World of Fixed-Width SIMD

■ The Problem of Diversity: Powerful as they are, architectures like NEON and AVX
share a common challenge.

■ Code is "Locked-in": A developer must write code for a fixed vector width.

▶ Your NEON code is written for 128-bit registers.
▶ Your AVX2 code is for 256-bit registers.

■ The Future-Proofing Dilemma: What happens when the next generation of
hardware has a wider vector unit?

▶ The software doesn’t automatically benefit.
▶ It forces developers to rewrite or recompile code to take advantage of new hardware

capabilities.

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 13 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

The Solution: ARM SVE - Vector Length Agnostic (VLA) Programming

■ ARM’s brilliant solution is Vector Length Agnostic
(VLA) programming.

■ Write Once, Scale Anywhere: Developers write a
single stream of SVE code. The code itself doesn’t
know or care if the hardware uses 128, 256, or even
2048-bit vectors.

■ Runtime Adaptation: When the program runs, the
hardware declares its vector length, and the SVE
code automatically scales to use the full width
available.

■ This is a paradigm shift that future-proofs
software, saves enormous development effort, and
is a game-changer for HPC and diverse server
environments.

The "Scalable Recipe" Analogy

Imagine writing a single recipe
that just says, "for each guest, do
this." At dinnertime, it

automatically works whether you
have 2 or 20 guests, without you
changing the recipe. That is

VLA.

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 14 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

ARM SVE/SVE2: The Scalable Future

■ A New Paradigm: Vector-Length Agnostic (VLA)

▶ Introduced with ARMv8.2-A (SVE) and ARMv9 (SVE2).
▶ Vector length is not fixed; can be from 128 to 2048 bits.

■ Key Architectural Features

▶ Scalable Vector Registers (Z0-Z31): The core data registers, whose width is defined
by the hardware implementation.

▶ Scalable Predicate Registers (P0-P15): Used for masking, enabling complex
conditional execution on a per-lane basis.

▶ Gather-Load / Scatter-Store: Instructions to efficiently handle non-contiguous data in
memory, a common bottleneck.

▶ First-Fault Register (FFR): A special predicate register that enables speculative
execution of loops, improving performance.

■ Evolution from SVE to SVE2

▶ SVE: Primarily focused on HPC and scientific computing.
▶ SVE2: A superset that extends SVE to accelerate a wider range of workloads, including

DSP and multimedia (tasks previously handled by NEON).

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 15 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

SVE Feature Focus: Predicate Registers (Masking)

■ What are they? Predicate registers (P0-P15) are a set of
special registers that hold a "mask" of true/false values.

■ How it Works: A Concrete Example

▶ Assume a 128-bit SVE system. A Z register holds 16 bytes.
▶ A corresponding P register is 16 bits long – one bit for each

byte.
▶ Let’s say we have a mask in P0:

P0 = 1111000011110000

▶ When we run an instruction like:
ADD Z0.B, P0/M, Z0.B, #5

▶ The mask directly controls the operation:

• A 1 bit enables the addition for the corresponding data
element (in this case, a byte).

• A 0 bit disables it.

Image taken from developer.arm.com

Predicate registers (P0-P15) correspond to the scalable vector

registers (Z0-Z31).

■ This direct bit-to-byte link is
what provides incredibly
fine-grained control.

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 16 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

ARM SME: Hardware Acceleration for Matrices

■ Purpose: Builds on SVE2 to dramatically accelerate matrix operations, targeting AI
and Machine Learning workloads.

■ Core Architectural Additions:

▶ The ZA Register: A massive, 2D matrix register file on the CPU. Think of it as a
hardware "tile" or spreadsheet for holding matrices.

▶ Streaming SVE Mode: A new execution mode designed specifically for matrix and
streaming data operations.

■ Key Operation: Outer Product

▶ The fundamental operation is the matrix outer product.
▶ Instructions like FMOPA take two vectors from the Z registers, multiply them, and

accumulate the result directly into the ZA tile.

■ Impact: A Leap in Performance

▶ Allows ARM CPUs to perform matrix math at speeds previously reserved for specialized
accelerators like GPUs.

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 17 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

BFloat16 (BF16): The Data Type Built for AI

■ The Problem with FP32: While accurate, the standard 32-bit float is too large for
AI. It consumes significant memory and bandwidth, slowing down training and
inference.

■ The 16-bit Trade-Off:
▶ FP16: Is small, but sacrifices range, making it prone to errors (overflow/underflow)

during AI training.
▶ BF16: The winning solution. It also uses 16 bits but keeps the same high range as

FP32 by sacrificing some precision.

Format Total Bits Exponent Bits Mantissa Bits Range Precision

FP32 32 8 23 High High

FP16 16 5 10 Low Low

BF16 16 8 7 High Medium-Low

■ Conclusion: AI models are resilient to lower precision but require a high range.
BF16 provides this stability at half the memory cost of FP32. Modern ARM
processors have native hardware support to accelerate it.

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 18 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

SME Architectural Feature: The ZA Array

■ A 2D Hardware Matrix:

▶ The heart of SME is the ZA Array, a
physical, square-shaped register file built
directly into the CPU core.

▶ Analogy: If normal vector registers are a
single row, the ZA array is a large
grid—perfect for the 2D structure of a
matrix.

■ Its Purpose: A High-Speed
Accumulator

▶ Its main job is to hold the intermediate and
final results of matrix multiplication.

▶ It acts as a high-speed "scratchpad" to
accumulate thousands of calculations
without constantly writing to slow main
memory.

Image taken from developer.arm.com

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 19 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

ZA Array: Scalability and Access

■ Scalable by Design

▶ Like SVE, the ZA array’s size is not fixed. It is defined by the hardware’s Streaming
Vector Length (SVL).

▶ It is always a square grid that is SVL-bytes by SVL-bytes.

• A 128-bit (16-byte) SVL means a 16x16 byte grid.
• A 512-bit (64-byte) SVL means a massive 64x64 byte grid.

■ Accessed via "Tiles"

▶ A programmer works with smaller, square sections of the grid called tiles.
▶ The hardware provides different "views" of the array, allowing it to be treated as being

made up of tiles of different data formats (e.g., 8-bit integers, 32-bit floats).

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 20 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

SME Architectural Feature: ZA Tiles

■ A ZA Tile is a logical, square sub-matrix within the single, physical ZA array. It is
the basic unit for matrix operations.

■ The number of available tiles and the size of each tile (in elements) depends on the
data type being used.

■ This allows the same hardware to be used flexibly for different precisions:

Data Type # of Tiles Tile Names Tile Size (256-bit SVL)

8-bit (.B) 1 ZA0.B 32x32 elements

16-bit (.H) 2 ZA0.H-ZA1.H 16x16 elements

32-bit (.S) 4 ZA0.S-ZA3.S 8x8 elements

64-bit (.D) 8 ZA0.D-ZA7.D 4x4 elements

128-bit(.Q) 16 ZA0.Q-ZA15.Q 2x2 elements

■ Programmers simply select a tile by name (e.g., ZA1.D), and the hardware handles
the underlying size and layout.

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 21 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

SME: Accessing ZA Tiles
Fine-Grained Tile and Slice Operations

■ Whole-Tile Access

▶ Tiles are accessed directly for full-tile operations
(e.g., initializing, loading, storing, computing).

▶ Example: STR ZA0.S, [Xn] stores the full tile to
memory.

■ Tile Slice Access
▶ Access a row or column of a tile:

• ZA0H.S[3] → Row 3 (horizontal slice)
• ZA0V.S[5] → Column 5 (vertical slice)

▶ Enables fine-grained vector-level operations.

■ Efficient Storage

▶ Internally interleaved layout optimizes
bandwidth and access patterns.

Conceptual ZA Usage

% Activate Streaming SVE mode
SMSTART ZA

% Load matrix tiles from memory
SMLOAD ZA0.S, [A]
SMLOAD ZA1.S, [B]

% Multiply-accumulate:ZA2 += ZA0 * ZA1
SMMLA ZA2.S, ZA0.S, ZA1.S

% Store result tile to memory
SMSTORE [C], ZA2.S

% Deactivate Streaming SVE mode
SMSTOP

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 22 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

VLA Programming: A Code Example

The Old Way: Fixed-Width (e.g., AVX2)

// Goal: C[i] = A[i] + B[i];
// This code is LOCKED to 256-bit vectors.

void add_arrays_avx2(float* C, float* A, float* B, long n) {
long i = 0;
// Process 8 floats (256 bits) at a time
for (; i <= n - 8; i += 8) {

__m256 vecA = _mm256_load_ps(&A[i]);
__m256 vecB = _mm256_load_ps(&B[i]);
__m256 vecC = _mm256_add_ps(vecA, vecB);
_mm256_store_ps(&C[i], vecC);

}
// (Handle remaining elements less than 8...)

}

Problem: If a new CPU has 512-bit registers,
this code still only processes 8 floats at a time.
It doesn’t get faster without a rewrite.

The New Way: VLA (e.g., ARM SVE)

// Goal: C[i] = A[i] + B[i];
// This code works on ANY vector length.
void add_arrays_sve(float* C, float* A, float* B, long n) {

long i = 0;
svbool_t pg; // The predicate (mask)
// "While i is less than n..."
// svwhilelt_b32 creates a mask that automatically
// fits the hardware’s vector length.
while (pg = svwhilelt_b32(i, n), svptest_first(pg)) {

svfloat32_t vecA = svld1_f32(pg, &A[i]);
svfloat32_t vecB = svld1_f32(pg, &B[i]);
svfloat32_t vecC = svadd_f32_x(pg, vecA, vecB);
svst1_f32(pg, &C[i], vecC);
// Increment by the number of elements
// we just processed (the vector length).
i += svcntw();

}
}

Solution: This single piece of code will automatically
use the full width (128, 256, 512-bit, etc.) of whatever
SVE machine it runs on. No rewrite needed.

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 23 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

What is Streaming SVE (SSVE) Mode?
A Dedicated Execution Mode for SME

What is Streaming SVE Mode (SSVE)?

■ A special execution mode introduced
by SME.

■ Its only job is to make the heavy math
in AI and scientific computing run
incredibly fast.

■ It does this by using a small set of
hyper-efficient instructions, making it
much better at this one specific task
than the standard, more flexible SVE2
mode.

Image taken from developer.arm.com

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 24 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

Streaming SVE (SSVE) Features Mode Management
Key Aspects and Conceptual Workflow

Key Features of SSVE Mode:

■ Activates ZA tile registers: SMSTART
enables ZA access.

■ Distinct Streaming Vector Length
(SVL): Can differ from non-streaming VL;
often hardware-optimized for size.

■ Optimized for data streaming:
Hardware handles matrix operations (e.g.,
SMMLA) efficiently with minimal software
intervention.

■ Subset of SVE2 instructions: Focuses on
high-throughput streaming math (no
complex predication, gather/scatter).

Enter Streaming SVE

SMSTART [ZA]

Conceptual SME Workflow

SMLOAD ZA0.S, [A] // Load A
SMLOAD ZA1.S, [B] // Load B
SMMLA ZA2.S, ZA0.S, ZA1.S // ZA2+=ZA0*ZA1
SMSTORE [C], ZA2.S // Store C

Exit Streaming SVE

SMSTOP [ZA]

Or via system registers (MSR SVCRSM, #1).

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 25 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

The Math Concept: What is an Outer Product?

■ An outer product is a fundamental operation in linear algebra where you multiply
two simple lists of numbers (vectors) to create a full 2D grid (a matrix).

■ Simple Example:
▶ Take a column vector ‘[2, 3]‘ and a row vector ‘[10, 20]‘.
▶ The outer product multiplies every element in the column by every element in the row.[

2
3

]
⊗

[
10 20

]
=

[
2 × 10 2 × 20
3 × 10 3 × 20

]
=[

20 40
30 60

]
■ This operation is a key building block for performing a full matrix-matrix

multiplication.
M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 26 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

SME: Building a Matrix Multiplication
Conceptual Example: C += A * B

■ Step 1: The First Outer Product

▶ Load the first column of matrix A into a Z
register.

▶ Load the first row of matrix B into another Z
register.

▶ Use FMOPA to compute their outer product and
add it to the ZA tile.

■ Step 2: The Second Outer Product

▶ Load the second column of matrix A.
▶ Load the second row of matrix B.
▶ Use FMOPA again. The hardware adds this new

outer product to the result already in the ZA tile.

■ This "calculate and accumulate" process repeats
in a loop until the final matrix C is complete in
the ZA tile.

Conceptual Assembly Loop

// Enter Streaming Mode & clear ZA tile
SMSTART ZA
ZERO {ZA0.S}
// --- Loop (conceptual) ---
for k in 0..N:

// Load column k from A into Z0
LD1W {Z0.S}, pg, [ptr_A_col_k]
// Load row k from B into Z1
LD1W {Z1.S}, pg, [ptr_B_row_k]
// Outer product and accumulate:
// ZA0 += Z0 * Z1_transposed
FMOPA ZA0.S, P0/M, P1/M, Z0.S, Z1.S

// --- Finalization ---
// Store result from ZA0.S to C
ST1W {ZA0.S}, pg, [ptr_C]
SMSTOP

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 27 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

Conclusion: Key Takeaways

■ A Journey of Escalation: We’ve traced the evolution of vector processing from
simple, fixed-width integer units like MMX to incredibly complex, scalable matrix
engines like ARM’s SME.

■ The Paradigm Shift to VLA: The most significant change has been the move
from fixed-width designs to ARM’s Vector Length Agnostic (VLA) architecture.
This future-proofs software and marks a new era in processor design.

■ AI as the Primary Driver: The recent, rapid innovation in this space—especially
with SME, dedicated matrix hardware, and new data formats like BFloat16—is
overwhelmingly driven by the massive computational demands of AI and Machine
Learning.

■ The Future is Co-Design: The path forward is no longer just about wider vectors.
It’s about the deep, intentional co-design of hardware and software to solve
specific, complex problems with maximum efficiency.

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 28 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

Vanilla matrix multiplication

What is a vanilla matmul?

■ The vanilla matrix multiplication operation
takes two input matrices, A [Ar rows x Ac
columns] and B [Br rows x Bc columns], to
produce an output matrix C [Cr rows x Cc
columns].

■ The operation consists of iterating on each
row of A and each column of B, multiplying
each element of the A row with its
corresponding element in the B column
then summing all these products

https://learn.arm.com/learning-paths/cross-platform/multiplying-matrices-with-sme2/3-vanilla-matmul/

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 29 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

Vanilla matrix multiplication

■ What is a vanilla matmul?

▶ The vanilla matrix multiplication operation
takes two input matrices, A [Ar rows x Ac
columns] and B [Br rows x Bc columns], to
produce an output matrix C [Cr rows x Cc
columns].

▶ The operation consists of iterating on each
row of A and each column of B, multiplying
each element of the A row with its
corresponding element in the B column
then summing all these products.

vanilla matmul

void matmul(uint64tM, uint64tK, uint64tN, constfloat ∗
restrictmatLeft, constfloat ∗
restrictmatRight, float ∗ restrictmatResult){

for (uint64tm = 0;m < M;m ++){
for (uint64tn = 0; n < N; n ++){
float acc = 0.0;
for (uint64tk = 0; k < K; k ++)
acc += matLeft[m * K + k] * matRight[k * N + n];
matResult[m * N + n] = acc; } } }

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 30 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

macc to load ratio

■ What is a macc:load ratio

▶ translates to 1 multiply-accumulate, which
is also known as macc, for two loads
(matLeft[m * K + k] and matRight[k *N +
n]).

▶ It therefore has a 1:2 macc to load ratio.
▶ From a memory system perspective, this is

not effective, especially since this
computation is done within a triple-nested
loop, repeatedly loading data from memory.

▶ To exacerbate matters, large matrices
might not fit in cache. In order to improve
the matrix multiplication efficiency, the goal
is to increase the macc to load ratio, which
means to increase the number of
multiply-accumulate operations per load.

core of standard matmul

acc += matLeft[m * K + k] * matRight[k * N + n];

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 31 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

Outer product matrix multiplication

■ What is a outer prod matmul?

▶ matLeft (3 rows, 2 columns) by matRight (2
rows, 3 columns), decomposed as the sum
of the outer products:

■ About transposition

▶ Matrices are laid out in row-major order in
memory: Loading row-data from memory is
efficient (contiguous data)

▶ Caches are loaded row by row, data
prefetching is simple - just load the data
from current address + sizeof(data).

▶ not the case for loading column-data from
memory system.

▶ gather load of sve2 doesnt work with
sve-streaming (=sme)

https://learn.arm.com/learning-paths/cross-platform/multiplying-matrices-with-sme2/3-vanilla-matmul/

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 32 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

Outer product matrix multiplication

The case with SVE

■ Each element of the left matrix (Ai,j must be
in every lane of the register and multiplied
by the row starting at column j for the SVL
elements

■ predicates must be present to control the
loop out of bounds

■ Acc(umulator) must be emptied at the right
time (that means after writing the result
back to the shaded yellow part of the
summation matrix

Arm Scalable Vector Extension and application to Machine Learning (Dan Andrei Iliescu, Francesco
Petrogalli)

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 33 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

Outer product matrix multiplication

The case with SVE

■ Each element of the left matrix (Ai,j must be
in every lane of the register and multiplied
by the row starting at column j for the SVL
elements

■ predicates must be present to control the
loop out of bounds

■ Acc(umulator) must be emptied at the right
time (that means after writing the result
back to the shaded yellow part of the
summation matrix

■ c.f. Arm Scalable Vector Extension and
application to Machine Learning (Dan
Andrei Iliescu, Francesco Petrogalli)

svl intrinsics for matmul with VLA vectorization

void hgemm(float *C, float const *A, float const
*B, ...) {

for (int i = 0; i < M; ++i)
for (int j = 0; j < N; j += svcnth()) {
svfloat16_t Acc = svdup_f16(0);
const svbool_t pred_j = svwhilelt_b16(j, N);
for (unsigned long k = 0; k < K; ++k) {
const svfloat16_t A_i_k = svdup_f16(A[i * K + k]);
const svfloat16_t B_k_j = svld1(pred_j, B[k * N +

j]);
Acc = svmla_x(pred_j, Acc, A_i_k, B_k_j); }
svst1(pred_j, C[i * N + j], Acc);

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 34 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

Resources

Nice / must-read resources:

■ Arm Scalable Vector Extension and application to Machine Learning (Dan Andrei
Iliescu, Francesco Petrogalli) https://developer.arm.com/-/media/Arm

■ https://learn.arm.com/learning-paths/cross-platform/multiplying-matrices-with-
sme2/4-outer-product/

Regarding predicates and ZA tiles (with clean link you must sign up for Arm
so just google it):

■ Part 1: Arm Scalable Matrix Extension (SME) Introduction
https://www.google.com/url?sa=tsource=webrct=jopi=89978449url=https://community.arm.com/arm-
community-blogs/b/architectures-and-processors-blog/posts/arm-scalable-matrix-
extension-introduction-
p2ved=2ahUKEwio24fWsv6NAxXUSvEDHa5ABKgQFnoECB0QAQusg=AOvVaw21wPUUk9LJUh-
ciBTR2Xgz

■ Part 2: Arm Scalable Matrix Extension (SME) Instructions

■ Repository: https://github.com/mhbiniaz/llama2.c-arm-sve-sme/tree/master

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 35 /??



Introduction: The Need for Speed A Historical Journey of Vector Processing The Rise of Scalable Vectors Algorithms

Q&A

Questions?

M. H. Biniaz (mbiniaz@gwdg.de), S. Madde (shrinath.madde@gwdg.de) HPC AI Team GWDG & OEHI 36 /??


	Introduction: The Need for Speed
	A Historical Journey of Vector Processing
	Early Days & x86 SIMD: MMX
	Early Days & x86 SIMD: MMX

	The Rise of Scalable Vectors
	ARM SVE (Scalable Vector Extension)

	Algorithms
	Vanilla matrix multiplication


